
Robot Software Architecture:
Unpacking Mobile Robot
Design
Fiona Opiyo | August 31, 2025

https://gamma.app/?utm_source=made-with-gamma

Introduction: Crafting Robust Robot Systems
Software architecture defines a system's high-level structure and ensures it meets specific needs. For mobile robotics, this means
building in:

1

Real-Time Capabilities
Immediate processing for dynamic
environments.

2

Asynchronous Data
Processing
Handling concurrent sensor inputs
and commands.

3

Distributed Functionality
Components operating across
different hardware.

https://gamma.app/?utm_source=made-with-gamma

Architectural Patterns in Robotics

Component-Based

Platform and arm control devices operate as separate
components with their own subsystems while exchanging

specific data types

https://gamma.app/?utm_source=made-with-gamma

Architectural Patterns in Robotics

Client-Server

The server defines abstract operations for different robots,
while the client establishes the connection and sends high-

level commands (e.g., <ROTATE 90=, <MOVE 20=) that control
the robot9s actions.

https://gamma.app/?utm_source=made-with-gamma

Architectural Patterns in Robotics

Blackboard

Each component (e.g., sensors, mapping, localization,
planning) interacts asynchronously with the central shared

memory (tuple space), posting and retrieving data.

https://gamma.app/?utm_source=made-with-gamma

Architectural Patterns in Robotics

Database-Centric

A database-centric robotics architecture uses in-database
processing and resource adapters to securely handle real-
time events and integrate diverse robotic components like

sensors, actuators, and interfaces.

https://gamma.app/?utm_source=made-with-gamma

Architectural Patterns in Robotics

Event-Driven

This diagram shows an event-driven architecture where a
neuromorphic vision sensor (DAVIS) on the robot arm

detects asynchronous visual events from objects, triggering
real-time grasp detection and immediate adjustment of the

arm9s end effector for the best grasping pose.

https://gamma.app/?utm_source=made-with-gamma

Architectural Patterns in Robotics

Peer-to-Peer

 Nodes communicate directly with each other after discovery,
enabling distributed coordination without relying solely on a

central controller.

https://gamma.app/?utm_source=made-with-gamma

Architectural Patterns in Robotics

Publish-Subscribe

A decentralized, asynchronous model where publishers emit
data on topics and subscribers listen

https://gamma.app/?utm_source=made-with-gamma

The Two Pillars of Robust Robot
Architecture

Component-Based Architecture

Modularity & Reusability for flexible, interchangeable parts.

Publish-Subscribe Pattern

A decentralized, asynchronous model where publishers emit
data on topics and subscribers listen

https://gamma.app/?utm_source=made-with-gamma

Detailed Software Architecture for Mobile Robots

Hardware Abstraction Layer (HAL)

Directly interfaces with hardware (e.g., Arduino Nano for motor
control, encoder readings).

Firmware Communication Interface

Bridges high-level control (Raspberry Pi) and microcontroller
(Arduino) via serial communication.

ROS 2 Node: arduino_bridge_node

https://gamma.app/?utm_source=made-with-gamma

1. Firmware Communication Interface (arduino_bridge_node)

Role: The bridge between the ROS software world and the physical hardware.

Subscribes To: /cmd_vel (velocity commands). It listens for movement instructions from the navigation stack or a teleop node (like
a joystick).

Publishes: /odom (odometry data). It broadcasts the robot's estimated position based on raw data from the wheel encoders.

https://gamma.app/?utm_source=made-with-gamma

2. Robot Localization (ekf_localization_node)

Role: The sensor data fuser, creating a single source of truth for the robot's position.

Subscribes To: Multiple sensor topics, such as /wheel_odom (from the Arduino bridge) and /imu (from an Inertial Measurement
Unit).

Publishes: A fused and more accurate /odom topic and the /tf transform (the robot's position in the odometry frame).

https://gamma.app/?utm_source=made-with-gamma

3. Mapping (slam_toolbox)

Role: The environment modeler, building a map while tracking the robot's position.

Package: slam_toolbox

Subscribes To: /scan topic(from the LiDAR) and /odom (from the localization node).

Publishes: The /map topic (a 2D grid of the environment) and a /tf transform to place the robot correctly on that map.

https://gamma.app/?utm_source=made-with-gamma

4. Navigation Stack (Nav2)

Role: The primary decision-maker for autonomous movement.

Packages: nav2_bringup, nav2_planner

Subscribes To: A wide array of data: the /map topic(to know the world), /odom topic (to know its current position), /scan topic(to

see immediate obstacles), and /goal_pose topic(to know its destination).

Publishes: /cmd_vel topic (the final velocity commands to drive the robot).

https://gamma.app/?utm_source=made-with-gamma

Essential Tools & Data Representation

Perception (LiDAR)

Utilizes 360° 2D LiDAR to provide range measurements for
mapping and obstacle detection.

Robot Description (URDF/Xacro)

Provides a complete digital model of the robot, including
physical structure and sensors.

https://gamma.app/?utm_source=made-with-gamma

Simulation & Visualization

Simulation (Gazebo)

Physics-based 3D simulation environment for safe testing and
debugging.

Features: gravity, collisions, sensor emulation.

Visualization (RViz2)

Main tool for real-time visualization of robot data and
interactions.

Displays: robot model, laser data, maps, TF tree.

https://gamma.app/?utm_source=made-with-gamma

Example of how to organize your work

https://gamma.app/?utm_source=made-with-gamma

Integrated Robot Architecture Layers
01

Physical Hardware Layer
Sensors & Actuators: RPLIDAR, Arduino, DC Motors, Raspberry Pi.

02

Firmware Layer
Arduino Firmware (C++): Motor PID, Serial Protocol, Watchdog
Timer.

03

ROS 2 Node Layer
Perception, Localization, Navigation Stacks: rplidar_ros2_node,

ekf_filter_node, controller_server, etc.

04

Failure Recovery System
Monitoring (system_monitor) & Recovery Behaviors

(recoveries_node).

05

Debugging Tools
rqt_graph, rosbag2.

06

Simulation
Gazebo with various plugins.

https://gamma.app/?utm_source=made-with-gamma

References
https://roboticsdojo.substack.com/p/software-architecture-of-mobile-robot1.

https://drive.google.com/file/d/16vKXEoRQc7crN7w_REoBUZu1l8MaCfrK/view?usp=sharing2.

3.

https://roboticsdojo.substack.com/p/software-architecture-of-mobile-robot
https://drive.google.com/file/d/16vKXEoRQc7crN7w_REoBUZu1l8MaCfrK/view?usp=sharing
https://gamma.app/?utm_source=made-with-gamma

