
INTRODUCTION TO GIT AND
GITHUB

By RUTH OLUMO

What is Git?

▪ Git is a popular version control system.

▪ A Version Control System (VCS) is a tool that helps

developers track and manage changes to source code

(or any set of files) over time.

▪ It is used for:

▪ Tracking code changes

▪ Tracking who made changes.

▪ Coding collaboration.

Why use Git?

▪ Over 70% of developers use Git.

▪ Developers can work together from anywhere in the

world.

▪ Developers can view the full project history.

▪ Developers can revert to earlier versions of a project.

Core Git
Concepts

▪ Repository: A folder where Git tracks your project and

its history.

▪ Clone: Make a copy of a remote repository on your

computer.

▪ Stage: Tell Git which changes you want to save next.

▪ Commit: Save a snapshot of your staged changes.

Continuation

▪ Branch: Work on different versions or features at the

same time.

▪ Merge: Combine changes from different branches.

▪ Pull: Get the latest changes from a remote repository.

▪ Push: Send your changes to a remote repository.

Setup &
Installation

▪ Windows: Download installer from git-scm.com

▪ macOS: Install via Homebrew [brew install git] or

download the .dmg file and drag Git to your

Applications folder.

▪ Linux: Run sudo apt–get install git on Ubuntu

Initial
Configuration

▪ git config --global user.name "Your Name"

▪ git config --global user.email "[email@example.com]“

▪ The above sets the identity for commit

▪ Set a default text editor.

▪ Example: Set VS Code as Default Editor

▪ git config –global core.editor “code –wait”

▪ Add Git to your PATH. You can use Git commands in any

terminal window

Basic Git
Workflow

▪ Initialize or clone: git init

▪ OR git clone <repo-url>

▪ Edit and Stage

▪ git add <file> - Stage a file

▪ git add --all Or git add –A - Stage all changes

▪ git status – See what is staged

▪ git restore --staged <file> - Unstage a file.

Continuation

▪ Commit

▪ git commit –m “message” - Commit staged changes

with a message

▪ git commit –a –m “message” - Commit all tracked

changes(skip staging)

▪ git log – See commit history

▪ Pushing the changes to the repository

▪ git push

Git Branching

▪ A branch is like a separate workspace where you can

make changes and try new ideas without affecting the

main project

▪ Branches let you work on different parts of a project,

like new features or bug fixes, without interfering with

the main branch.

Git Branching

▪ Creating a new branch

▪ git branch <branch_name>

▪ Listing all branches: git branch

▪ Switching between branches: git checkout

<branch_name>

▪ Deleting a branch: git branch –d <branch_name>

Git Merging

▪ Merging means combining the changes from one

branch into another

▪ It’s how you bring your work together after working

separately on different features or bug fixes.

▪ Merging branches: git merge <branch_name>

▪ First, switch to the branch you want to merge into.

▪ Run the merge command with the branch name you want

to combine into.

NOTE!

Always commit or stash your changes before

staging a merge

Git Stashing

▪ Git stash lets you save your uncommitted changes and

return to a clean working directory.

▪ You can come back and restore your changes later.

▪ Common Use cases:

▪ Switch branches safely: Save your work before changing

branches.

▪ Handle emergencies: Stash your work to fix something

urgent, then restore it.

▪ Keep your work-in-progress safe: Avoid messy commits

or losing changes.

▪ Stash your work: git stash OR git stash push –m

“message”

▪ Apply the stashed changes back: git stash apply

▪ Drop a Stash: git stash pop

Git and GitHub
Integration

What is GitHub?

▪ A cloud-based platform for hosting Git repositories.

▪ Provides a user interface for version control, issue

tracking, and collaboration.

▪ Owned by Microsoft.

Common
GitHub

Commands

▪ Push: Upload local commits to GitHub

▪ git push origin main

▪ Pull: Download changes from GitHub to your machine

▪ git pull origin main

▪ Clone: Copy a GitHub repository to your local system

▪ e.g git clone https://github.com/username/repo.git

▪ Fork: Copy a GitHub repository to your personal

GitHub account.

https://github.com/username/repo.git

GitHub Features

• Pull Requests: Propose and discuss code changes

• Issues: Report bugs, plan tasks

• Actions: Automate workflows like tests or deployments

• Forking: Copy someone's repo to your GitHub to make

independent changes

Collaborating
with GitHub

Typical Team Workflow

1. Fork a repository (copy to your account)

2. Clone to your machine.

git clone https://github.com/yourname/forked-repo.git

3. Create a feature branch

1. Git checkout –b feature-x

4. Make Changes – (git add . ; git commit –m “message”)

5. Push Changes.

6. Create a Pull Request (PR) on GitHub to propose

changes

7. Team reviews, discusses, and merges PR into main

branch.

Pro Tip

Use .gitignore to avoid pushing unnecessary files(e.g.

node_modules, .env)

https://github.com/yourname/forked-repo.git

Branching Strategies
(Collaboration Modality)

What is a
Branching
Strategy?

▪ A branching strategy is a workflow or plan for how

developers manage, collaborate, and organize their

source code using branches in a version control

system like Git.

▪ A branching strategy defines when, why, and how to

create, merge, and delete those branches.

Why is it
Important?

• Prevents conflicts when many developers work on the

same codebase.

• Keeps the main codebase (e.g., main or master) stable.

• Supports testing, feature development, hotfixes, and

releases more efficiently

Common
Branching
strategies

▪ Feature Branching

▪ Git Flow

▪ GitHub Flow

▪ Trunk Based Development

Trunk Based
Development

▪ Developers commit directly to main

▪ Short-lived branches

▪ Very frequent merges (daily)

▪ Relies on CI/CD for testing

Advantages of
TBD

▪ Faster feedback loops

▪ Reducing merge conflicts

▪ Improved Collaboration

▪ Easier code reviews

▪ Continuous integration and delivery

Disadvantages
of TBD

▪ Limited isolation

▪ Increased pressure on testing.

▪ Requires a strong team culture

Feature
Branching

▪ Each new feature is developed in its own branch.

▪ Long-lived branches.

▪ Merged into main or develop after completion.

Advantages of
Feature

Branching

1. Isolated Development

Each feature is independent, reducing the risk of

interfering with other parts of the system.

2.Enables Code Reviews

PRs allow team members to review code and catch

bugs before integration.

3.Maintains a Stable Main Branch

main or develop remains clean and deployable while

features are developed in isolation.

4.Parallel Development

Multiple developers or teams can work on different

features at the same time.

5.Traceability

It’s easier to trace what changes were made for a

particular feature or bug fix

Disadvantages
of Feature
Branching

1.Merge Conflicts

If branches live too long without syncing, they may lead

to complicated conflicts.

2.Delayed Integration

Features that take too long to merge can drift away from

the current state of the main codebase.

3.Slower Feedback

Bugs might only appear once the feature is merged and

tested with the rest of the system.

4.Branch Management Overhead

Requires discipline in naming, tracking, and cleaning

up branches.

Git Flow

• Popular in large teams/projects.

• Uses multiple main branches:

• main/master→ production-ready code

• develop→ integration branch for features

• feature/, release/, hotfix/→ specific purposes

Advantages of
Git Flow

1.Highly Structured

Each branch has a specific purpose. This brings clarity

to the development process.

2.Safe Releases

Code undergoes integration, testing, and staging

before reaching production.

3.Support for Multiple Versions

You can maintain older releases (via hotfix) while

continuing development on the next version.

4.Good for Teams with Defined Roles

Developers, testers, and release managers can work

independently on different branches.

5.Ideal for Large Projects

Especially where long-term maintenance, staging

environments, and scheduled releases are required.

Disadvantages
of Git Flow

1.Complexity

Involves many branches and merge operations. May be

overwhelming for small teams or fast-paced projects.

2.Slower Integration

Features take longer to reach production due to

multiple intermediate steps. May not be ideal for teams

with very short release cycles or those striving for

continuous delivery.

GitHub Flow

• Lightweight, simple workflow.

• Only main branch is permanent.

• Developers create short-lived feature branches, open

pull requests, merge quickly.

Advantages of
GitHub Flow

1.Lightweight and Simple

Very easy to understand and implement. Fewer long-

lived branches to manage.

2.Encourages Continuous Deployment

Ideal for projects that require rapid iteration and

frequent updates.

3.Promotes Collaboration

Pull requests serve as a hub for team discussion,

reviews, and visibility.

4.Easy Integration with GitHub Tools

Seamless with GitHub Actions, Issues, Projects, and

more.

Disadvantages
of GitHub Flow

1.Not Ideal for Versioned Releases

Doesn’t support managing multiple production versions

at the same time.

2.No Dedicated Release Process

Everything merges into main, so additional steps are

needed if you want staged releases.

3.Requires Reliable Testing Infrastructure

Without automated testing, broken code could easily

reach main.

Choosing a
Branching
Strategy

• Consider team size (small vs. large).

• Look at project complexity.

• Think about merge conflict risks.

• Ensure it supports collaboration & code reviews.

• Choose something that’s easy to maintain long-term.

REFERENCES ▪ Introduction to Git and GitHub

https://open.substack.com/pub/roboticsdojo/p/git-and-github-for-beginners-the?r=69fo8o&utm_campaign=post&utm_medium=web

Thank You!!

Q&A

