

3D Printing

What is 3D Printing?

3D printing, also known as additive manufacturing, is a modern manufacturing process that creates three-dimensional objects from a digital file using a 3D printer.

Why 3D printing matters

Why 3D printing matters

A Brief History of 3D Printing

Fun Fact!!

• The **first 3D printed object** ever was a small black plastic eyewash cup, created by Chuck Hull in 1983 to prove his new idea worked.

Methods of 3D Printing

Most 3D printing methods fall into a few main types, each with its own materials, process, and best uses.

Let's hear some guesses 🙂

What is the Difference?

Fused Deposition Modeling (FDM)

How it works:

 A plastic filament (like PLA or ABS) is melted and extruded through a heated nozzle, building the object layer by layer.

Fused Deposition Modelling

Stereolithography : (SLA)

How it works:

- A container of liquid photosensitive resin holds the printing material.
- A laser beam traces and hardens the resin layer by layer, turning the liquid into solid plastic wherever the laser touches.
- Process repeats until the whole 3D object is formed.

Stereolithography

Illustration of different 3D Printing Methods

Emerging Methods

3D Printers

For you to 3D print, you'll obviously require a 3D printer. There are many types of 3D printers, each with its own unique specifications.

Have you worked with one before?

Type of 3D Printers

Type of 3D Printers

Food Printer

Bioprinters

The Original Prusa i3 MK3S Printer

1. Slicing & Print Settings

- Infill density: Higher infill for strength; lower saves material and time.
- Supports: Add supports for overhangs if needed, and check placement.
- Bed adhesion tools: Use brim, raft, or skirt depending on print shape.

2. Preparation & Setup

• Clean the build surface/ sheet: Remove dust, oils, or leftover filament bits by using Isopropyl alcohol on a paper towel or a warm soapy cloth.

• Apply an adhesive to the sheet: This helps to hold the first layer of the object to

be 3D printed in place.

• Check the bed level: Ensure the build plate is properly leveled for good first layer adhesion.

• Check if the sheet is in place: ensure the sheet is properly seated on the magnetic heatbed.

- Choose the right filament: Match filament type (PLA, ABS, PETG, etc.) to your print needs.
- When loading new filament, **cut it in an angle** to ensure easier insertion into the extruder and to reduce chances of clogging.
- Check spool condition: Make sure filament isn't tangled or brittle.

3. During Printing

• Monitor the first layer: a bad first layer usually ruins the print.

- Watch temperature: Keep an eye on nozzle and bed temps to avoid clogs or warping.
- **Keep the area clear**: Avoid bumping the printer or letting anything hit moving parts. Bumps lead to the X, Y or Z crashing.

4. After Printing

- Remove print carefully: Let the bed cool before removing the print. If you encounter any resistance, use a spatula or flexible bed to avoid damage.
- Store filament properly: In dry, sealed containers to avoid moisture.

5. Maintenance & Safety

- Regular cleaning: Remove filament residue and dust from fans and rails.
- Check moving parts: Tighten belts, check for loose screws, and clean rods.
- Proper ventilation: Especially when printing with ABS or resins.
- Handle hot parts carefully: Nozzle and bed stay hot even after printing.

6. Software & Updates

• Update firmware: Keeps your printer safer and fixes bugs.

3D Printing Practical Guide Using PrusaSlicer and Prusa Printer

Step 1: Download PrusaSlicer

Go to the official PrusaSlicer page: <u>PrusaSlicer Original Prusa 3D printers directly from Josef Prusa</u>

• Choose the version compatible with your OS (Windows, macOS, Linux)

Download the installer and run it.

Step 2: Install PrusaSlicer

Follow the on-screen setup instructions.

Step 3: Initial Configuration

• After installing and launching PrusaSlicer for the first time, you'll go through a Configuration Wizard. Follow these exact steps to ensure you're correctly set up for the **Original Prusa i3**MK3S/MK3S+ printer with a 0.4 mm nozzle.

i) Start the Configuration Wizard

- When you first open PrusaSlicer, the Configuration Wizard will launch automatically.
- If not, you can start it manually:
- Click Configuration > Configuration Wizard from the top menu.

ii) Optional - Create or Skip Account

- You'll be prompted to sign in or create a Prusa Account.
- You can choose to skip this step.
- Click Next to proceed.

iii) Select Printer Sources

A list of printer profiles and sources will be shown.

1. Deselect everything except:

Prusa FFF printers (keep this one checked)

2. Click **Next** and wait for PrusaSlicer to fetch the available printer configurations.

iv) Select Your Printer

From the list, scroll down to MK3 Family and select:

Original Prusa i3 MK3S & MK3S+

v) Choose Nozzle Size

• Choose:

0.4 mm nozzle (the most commonly used and standard size for most prints)

• Click Next.

vi) Custom Printer Setup

Click Next

viii) Filament Profiles Selection.

Leave it as it is and click Next.

ix) Automatic Updates Selection

Check the boxes and click on Next.

Click Next

←

Click Next

x) Files Association

Check the boxes and click on Next.

xi) View Mode

- Select your preferred mode according to your level of experience.
- Click On Finish.

2. Importing an STL File and Preparing It for Slicing in PrusaSlicer.

Once setup is completed, the main PrusaSlicer workspace opens. You can begin importing your 3D design for slicing.

Step 1: Click the "Add" Button

On the top-left toolbar, click the Add button (represented by a cube icon with a plus sign).

• A file browser window will open.

Step 2: Locate and Select Your STL File

- In the file browser:
 - Navigate to the folder where you saved your 3D model.
 - Select the file with the .stl extension (e.g., Bottom_Chassis_1.stl).
 - Click Open.

The STL file will now appear on the virtual print bed in the PrusaSlicer workspace.

Step 3: Adjust Model Position (Optional)

Once the model is imported:

- Move Tool: Click and drag to reposition the object on the bed.
- Rotate Tool: Use the rotation handles if your model needs re-orientation.
- Scale Tool: Resize your model if needed (use the right-side panel or shortcut S).

Step 4: Review Print Settings

Check or modify the key parameters:

- Print Settings: e.g., 0.15mm QUALITY.
- Filament: Make sure Generic PLA is selected (or the material you're using)
- Printer: Should already show Original Prusa i3 MK3S+
- Infill: Choose your desired percentage of infill depending on strength needed.

- Click the "Slice Now" button
- Review the estimated time, filament usage, and preview the layers

3. Exporting the G-code

- Click Export G-code
- Name your file clearly (e.g., Bottom_Chassis_1.gcode)
- Save it to a location you can access easily.
- Remove the SD Card from Prusa printer's SD card slot and insert it into your laptop.
- Move the .gcode file to your SD card.

4. Loading G-code into the 3D Printer

- Safely remove the SD card from your computer
- Insert it into the Prusa printer's SD card slot

5. Preparing the Print Bed

- Use isopropyl alcohol and a lint-free cloth to wipe the bed surface
- Ensure it's free of dust or oil

6. Starting the Print

Step 1: Select File

- On the Prusa printer menu:
 - Go to Print from SD
 - Select your G-code file (e.g., Bottom_Chassis_1.gcode)

Step 2: Start Printing

- Confirm selection.
- The printer will:
 - Calibrate for positioning.
 - Heat the nozzle and bed
 - Begin printing automatically

 And just like that, you're done! Here's what I printed using this exact setup — the Bottom Chassis for our robot

References

3D Printing Blog

3D Printers Blog

Guide to 3D Print using the PrusaSlicer with the Prusa MK3S

Thank You!

Created by Maryanne Farida

maryannefarida@gmail.com