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Abstract—This paper presents the design and implementation 

of an autonomous rover developed for the JKUAT Robotics Dojo 
competition, aimed at navigating a structured game field with 
object transport capabilities. The rover integrates multiple sensing 
modalities: including LIDAR, camera vision, and ultrasonic 
sensors under the ROS 2 (Robot Operating System) framework to 
enable simultaneous localization and mapping (SLAM), obstacle 
avoidance, and goal-oriented navigation. The robot is capable of 
autonomously mapping its environment, detecting and classifying 
objects via computer vision, transporting a payload across the field, 
and offloading it at a designated location. Emphasis is placed on 
sensor fusion, robust path planning, and real-time autonomy in 
dynamic conditions. This work demonstrates a practical 
implementation of autonomous mobile robotics for logistics-style 
tasks in a controlled competition environment. 

I. INTRODUCTION 

Autonomous mobile robots have become an essential 
component in modern robotics research and practical 
applications, ranging from industrial automation to 
exploration, logistics, and smart environments. The demand 
for robots capable of intelligent navigation, real-time decision-
making, and efficient task execution continues to grow, driven 
by advancements in sensing, computation, and open-source 
robotic frameworks. 

This paper presents the development of an autonomous rover 
designed for participation in the JKUAT Robotics Dojo 
competition. The primary objective of the project is to build a 
mobile robot capable of navigating a structured game field, 
mapping the environment in real time, transporting a physical 
object onboard, and accurately offloading it at a designated 
target location all without human intervention. 

To achieve full autonomy, the robot utilizes the Robot 
Operating System 2 (ROS 2), which provides a modular and 
scalable middleware for integrating various components such 
as LIDAR for environmental mapping, a camera for visual 
perception and object detection, and ultrasonic sensors for 
obstacle avoidance. The system leverages SLAM 
(Simultaneous Localization and Mapping) to dynamically 
construct a map of the game field while planning optimal 
paths to reach goals efficiently and safely. 

This paper details the hardware integration, software 
architecture, navigation algorithms, and perception strategies 
implemented to achieve autonomous operation. The project 

aims not only to address the specific challenge of the 
competition field but also to demonstrate a scalable approach 
to autonomous robotics that can be adapted to real-world 
applications in logistics, surveillance, and delivery 

II. PAPER CONTENTS 

A. Mechanical Design Strategy 
The main frame of the rover is constructed from laser-cut 
acrylic sheets, chosen for their affordability, ease of 
prototyping, and sufficient rigidity for indoor robotics 
applications. Acrylic panels serve as the base platform for 
mounting all mechanical and electronic components, including 
motors, sensors, battery, and control boards. 
 
3D printed brackets and mounts were used to hold components 
such as the LIDAR, camera, and servo mechanism. These 
custom parts were designed using CAD software (Fusion) and 
printed using PLA filament, allowing for fast iterations and 
design customization. 

The chassis designed is modular allowing for quick access to 
internal components, making maintenance and upgrades more 
efficient. 

The rover uses a 4-wheel drive system, with each wheel 
independently powered by a DC geared motor. This 
configuration provides enhanced traction and torque, 
especially useful when carrying payloads or navigating ramps 
and textured surfaces. 

Each motor is rigidly mounted onto the acrylic chassis using 
brackets and fastened by bolts and nuts, ensuring alignment 
and minimizing vibration. The differential drive control is 
implemented in software, allowing the rover to perform 
smooth turns, pivots, and straight-line movements using speed 
and direction control of individual motors. 

The 4WD configuration contributes to: 

1. Improved load distribution 
2. Better grip during acceleration or braking 
3. Enhanced stability, especially when the payload 

center of mass shifts 
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A key mechanical feature of the rover is its object handling 
and offloading mechanism, which enables it to transport and 
release a payload at the target zone. 

The mechanism consists of a servo-actuated lowering 
platform, designed to secure the payload during transit and 
release it by tilting or lowering at the destination. The platform 
is hinged at the back and attached to a standard servo motor, 
which is controlled via the microcontroller through a ROS 
node to execute pre-programmed movements. 

Design considerations for this mechanism included: 

1. Low weight to avoid overloading the servo 
2. Sufficient clearance from ground and sensors 
3. Secure locking during motion to prevent payload 

shift 

3D printed parts were used to build the lowering tray and 
linkages, allowing easy customization and adjustments during 
the testing phase. 

Mounting points for sensors were carefully designed to 
optimize field of view and minimize interference: 

1. LIDAR was placed centrally and elevated to provide 
an unobstructed 360-degree scan 

2. Camera was mounted at the front with a slight 
downward tilt to assist in object recognition and path 
alignment 

3. Ultrasonic sensors were positioned on the front and 
sides to detect close-range obstacles 

Protective housings were added around fragile components to 
shield them from impacts during field operation. 

B. Electrical Design Strategy 

 Power Supply: 

 A pack of four 18650 lithium-ion cells (nominal 
14.8V) powers the high-current components, 
including the DC motors (via L298N drivers) and the 
servo motor. This pack is connected directly to the 
motor driver input terminals and a 5V step-down 
voltage regulator for peripherals requiring lower 
voltages. 

 

Raspberry Pi Power Supply: A 20000mah USB 
power bank supplies stable 5V directly to the 
Raspberry Pi via its USB-C input. This ensures the Pi 
receives uninterrupted and clean power, independent 
of the motor power system. This was decided after 
realizing it was difficult to get a stable 5v from the 
stepped down voltage. 

This dual-source architecture provides: 

1. Electrical isolation between motors and control 
electronics 

2. Reduced risk of Pi brownouts during motor spikes 
3. Better battery management and modular debugging 

A common ground connection is established between both 
systems to ensure signal consistency for serial communication 
between the Arduino and Raspberry Pi 

An onboard power distribution board or wiring hub is used to 
split power lines to all components while keeping the system 
compact and manageable. 

Each pair of DC motors (left and right) is controlled by an 
L298N dual H-bridge motor driver. The L298N modules are 
responsible for supplying current to the motors and allowing 
directional control (forward/reverse) and speed control via 
PWM. 

To reduce wiring complexity and save microcontroller pins, 
the Enable (EN) pins of each motor pair are looped together, 
For example:  

• EN_A for both left-side motors (looped) 
• EN_B for both right-side motors (looped) 

This setup allows for synchronized control of each side using 
a single PWM signal per side, which simplifies software 
control while preserving differential drive behavior. 

Motor Driver Wiring: 

1. IN1, IN2 → Arduino digital pins (Left motor 
direction) 

2. IN3, IN4 → Arduino digital pins (Right motor 
direction) 

3. EN_A, EN_B → Arduino PWM pins  
4. 12V/VCC → Battery positive 
5. GND → Common ground 
6. OUT1–OUT4 → Connected to motors 

 Encoder Feedback 

The motors are equipped with encoders to provide feedback 
for closed-loop control. Each encoder has two channels (A and 
B), producing quadrature signals which the Arduino reads to 
determine: 

1. Wheel rotation direction 
2. Speed (by measuring pulse frequency) 
3. Distance (by counting pulses) 

The encoder data is processed by the Arduino to enable 
features like: 
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1. Velocity control (PID) 
2. Distance-based movement 
3. Odometry for dead-reckoning (if needed by the ROS 

stack) 

A standard servo motor is used to operate the payload 
lowering mechanism. The servo is powered by the 5V 
regulated line and is controlled by the Arduino via a single 
PWM pin. 

1. Signal → Arduino digital PWM pin 
2. VCC → 5V regulator output 
3. GND → Common ground 

The system uses a dual-controller architecture: 

• Arduino Uno: Handles low-level motor control, 
encoder feedback, and servo actuation 

• Raspberry Pi (4/3): Runs ROS 2, manages sensor 
processing, navigation algorithms, and decision 
making 

The Raspberry Pi and Arduino communicate via USB serial or 
UART, with the Arduino exposing a custom serial interface 
for commands like: 

• MOTOR_SPEED(left, right) 
• GET_ENCODER_DATA() 
• LOWER_PAYLOAD() 

ROS 2 nodes on the Pi publish motor commands and 
subscribe to encoder data for navigation and SLAM 
integration. 

C. Software Strategy 

The software architecture for the autonomous rover was 
designed around the principles of modularity, real-time 
performance, and scalability, with a clear separation between 
high-level decision-making and low-level hardware control. 
The system leverages the capabilities of ROS 2 (Robot 
Operating System 2) running on a Raspberry Pi, in 
conjunction with an Arduino handling real-time motor and 
actuator control. 

This division allows the system to perform complex 
navigation, mapping, and perception tasks while ensuring fast 
and deterministic control of the motors and sensors. 

Layered Software Architecture 

The software stack is divided into three main layers: 

1. Hardware Control Layer (Arduino) 
Responsible for motor driving, encoder reading, and 
servo actuation. The Arduino exposes a simple serial 

interface to receive commands and send sensor 
feedback. 

2. Robot Operating Layer (ROS 2 on Raspberry Pi) 
Manages all sensor inputs (LIDAR, camera, 
ultrasonic), mapping, localization, path planning, and 
autonomous decision-making using ROS 2 nodes and 
standard packages. 

3. Communication Layer (Serial Interface) 
Facilitates robust data exchange between Raspberry 
Pi and Arduino, converting ROS 2 motion commands 
into low-level motor control signals and relaying 
encoder feedback for localization 

The Arduino runs a lightweight firmware loop, written in C++, 
to perform the following functions: 

• Read encoder pulses using interrupts and compute 
speed or position 

• Control motor speed and direction via PWM and 
digital signals to L298N 

• Actuate the servo when commanded for payload 
lowering 

• Parse serial commands received from the Raspberry 
Pi 

• Send structured data (e.g., encoder counts, servo 
status) back to the Pi at a regular rate 

The rover uses LIDAR-based Simultaneous Localization and 
Mapping (SLAM) to autonomously build a map of the 
environment and localize itself in it. This is implemented 
using standard ROS 2 packages such as: 

• slam_toolbox or cartographer for 2D mapping 
• nav2 stack for localization and navigation 
• tf2 for managing coordinate transforms between robot 

base, odometry, and map frames 

Odometry from the Arduino (based on encoder data) is fused 
with LIDAR input to enhance localization accuracy. 

The ROS 2 nav2 stack handles the motion planning tasks. It 
includes: 

1. Global path planner  
2. Local planner for obstacle avoidance (e.g., DWB 

controller) 
3. Cost maps built from LIDAR and ultrasonic data 
4. Goal setting from mission control (e.g., move to 

drop-off zone) 

The camera vision node uses OpenCV (or a pre-trained 
lightweight model) to detect objects, align the rover, or verify 
drop-off success. Potential vision tasks include: 

• Line detection or color tracking 
• Object presence verification 
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• Zone identification using April Tags or fiducial 
markers 

Camera data is processed onboard the Raspberry Pi, and 
detection results are used to trigger state transitions in the 
mission control logic. 

On the laptop, computationally intensive tasks such as SLAM, 
the Nav2 navigation stack, and deep learning–based disease 
detection are executed. SLAM Toolbox generates a 2D map 
from LiDAR and odometry data, while Nav2 handles 
localization, global path planning, and obstacle avoidance. 
RViz2 provides a graphical interface for visualization and goal 
setting, enabling operators to monitor the robot in real time. A 
PyTorch-based vision node processes camera images to identify 
diseased plants, publishing results for further analysis. This 
distributed architecture balances processing loads across the 
devices and enables the robot to autonomously explore 
environments while contributing to precision agriculture 
through plant health monitoring. 
 
 

D. Experimental Results 
 
To validate the performance, reliability, and integration of 

the autonomous rover, a structured testing approach was 
adopted. Testing was conducted progressively throughout 
development, beginning with individual component 
verification (unit testing), followed by system-level integration 
and limited field trials. As of the technical design paper 
submission, the system has undergone multiple iterations of 
hardware-software validation both in simulation and on 
physical test environments modeled after the Robotics Dojo 
game field. 
 

Unit and Integration Testing 

Each major subsystem was first tested independently before 
being integrated into the complete system: 

1. Motor Control Testing: The Arduino and L298N 
motor driver configuration was tested using simple 
serial commands to validate direction, speed, and 
braking behavior. Encoders were monitored for real-
time feedback accuracy. 

2. Sensor Testing: The LIDAR was tested in static and 
dynamic environments using ROS 2’s rviz2 to ensure 
proper scan generation and data publishing. The 
ultrasonic sensors were tested for obstacle detection 
thresholds. The camera vision pipeline was validated 
with controlled image datasets and real-world 
lighting conditions. 

3. Servo Actuation: The payload-lowering mechanism 
was actuated repeatedly to evaluate response time, 
position accuracy, and torque sufficiency under load. 

4. Communication Link: Serial communication between 
the Raspberry Pi and Arduino was tested under load 
conditions, with consistent command execution and 
feedback confirmed over extended operation periods. 

The team utilized ROS 2 simulation tools (Gazebo) to test core 
navigation and perception algorithms in a virtual environment 
before deployment. This allowed testing of: 

1. SLAM performance in synthetic environments 
2. Path planning and obstacle avoidance 
3. Mission control state machine transitions 
4. Safety overrides based on sensor input 

Simulation accelerated development by allowing risk-free 
testing of high-level logic and edge cases that would be 
difficult to replicate physically. 

To date, the rover has undergone over 15 combined hours of 
physical testing, spread across motion control tuning, SLAM 
trials, and object handling tests. Key milestones achieved 
include: 

1. Successful 2D mapping of a 3x3 meter test field 
using LIDAR and SLAM toolbox 

2. Obstacle detection and avoidance using ultrasonic 
sensors and costmap integration 

3. Reliable point-to-point navigation using ROS 2 
nav2 stack 

4. Payload pickup and offloading with repeatable servo 
actuation 

Testing has also helped identify mechanical issues, such as 
servo overloading and wheel slippage, which are currently 
being addressed in hardware iterations. 

Although a full quantitative reliability model has not been 
implemented yet, the team has performed several qualitative 
assessments and stress tests: 

1. Servo Life Testing: The payload mechanism was 
cycled over 50 times continuously to check for 
mechanical wear or servo overheat. No significant 
degradation was observed. 

2. Battery Runtime Estimation: Under full operation, the 
4x18650 battery pack provides approximately 40–50 
minutes of continuous drive and control, depending 
on terrain and load. 

3. Encoder Signal Stability: The team observed 
occasional signal jitter at high speeds, leading to 
plans for interrupt signal filtering in future firmware 
versions. 

4. Structural Robustness: While acrylic was chosen for 
prototyping, minor cracks developed under repeated 
mechanical stress—indicating a need for additional 
reinforcement or material substitution (e.g., 
aluminum or ABS) in future revisions. 
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The team is also exploring simple failure mode scenarios, 
such as motor stall, sensor dropout, and communication loss, 
to implement recovery strategies (e.g., timeouts,  
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