
JABARI 1 of 5

Jabari Robotics Dojo Technical Design Paper
Robotics Dojo 2025

Japheth Libese, Jerry Kiche, Clinton Sabi, Nathan Mwaura, Ian Ndirangu (Jabari)

Abstract—This paper presents the design and implementation

of an autonomous rover developed for the JKUAT Robotics Dojo
competition, aimed at navigating a structured game field with
object transport capabilities. The rover integrates multiple sensing
modalities: including LIDAR, camera vision, and ultrasonic
sensors under the ROS 2 (Robot Operating System) framework to
enable simultaneous localization and mapping (SLAM), obstacle
avoidance, and goal-oriented navigation. The robot is capable of
autonomously mapping its environment, detecting and classifying
objects via computer vision, transporting a payload across the field,
and offloading it at a designated location. Emphasis is placed on
sensor fusion, robust path planning, and real-time autonomy in
dynamic conditions. This work demonstrates a practical
implementation of autonomous mobile robotics for logistics-style
tasks in a controlled competition environment.

I. INTRODUCTION

Autonomous mobile robots have become an essential
component in modern robotics research and practical
applications, ranging from industrial automation to
exploration, logistics, and smart environments. The demand
for robots capable of intelligent navigation, real-time decision-
making, and efficient task execution continues to grow, driven
by advancements in sensing, computation, and open-source
robotic frameworks.

This paper presents the development of an autonomous rover
designed for participation in the JKUAT Robotics Dojo
competition. The primary objective of the project is to build a
mobile robot capable of navigating a structured game field,
mapping the environment in real time, transporting a physical
object onboard, and accurately offloading it at a designated
target location all without human intervention.

To achieve full autonomy, the robot utilizes the Robot
Operating System 2 (ROS 2), which provides a modular and
scalable middleware for integrating various components such
as LIDAR for environmental mapping, a camera for visual
perception and object detection, and ultrasonic sensors for
obstacle avoidance. The system leverages SLAM
(Simultaneous Localization and Mapping) to dynamically
construct a map of the game field while planning optimal
paths to reach goals efficiently and safely.

This paper details the hardware integration, software
architecture, navigation algorithms, and perception strategies
implemented to achieve autonomous operation. The project

aims not only to address the specific challenge of the
competition field but also to demonstrate a scalable approach
to autonomous robotics that can be adapted to real-world
applications in logistics, surveillance, and delivery

II. PAPER CONTENTS

A. Mechanical Design Strategy
The main frame of the rover is constructed from laser-cut
acrylic sheets, chosen for their affordability, ease of
prototyping, and sufficient rigidity for indoor robotics
applications. Acrylic panels serve as the base platform for
mounting all mechanical and electronic components, including
motors, sensors, battery, and control boards.

3D printed brackets and mounts were used to hold components
such as the LIDAR, camera, and servo mechanism. These
custom parts were designed using CAD software (Fusion) and
printed using PLA filament, allowing for fast iterations and
design customization.

The chassis designed is modular allowing for quick access to
internal components, making maintenance and upgrades more
efficient.

The rover uses a 4-wheel drive system, with each wheel
independently powered by a DC geared motor. This
configuration provides enhanced traction and torque,
especially useful when carrying payloads or navigating ramps
and textured surfaces.

Each motor is rigidly mounted onto the acrylic chassis using
brackets and fastened by bolts and nuts, ensuring alignment
and minimizing vibration. The differential drive control is
implemented in software, allowing the rover to perform
smooth turns, pivots, and straight-line movements using speed
and direction control of individual motors.

The 4WD configuration contributes to:

1. Improved load distribution
2. Better grip during acceleration or braking
3. Enhanced stability, especially when the payload

center of mass shifts

JABARI 2 of 5

A key mechanical feature of the rover is its object handling
and offloading mechanism, which enables it to transport and
release a payload at the target zone.

The mechanism consists of a servo-actuated lowering
platform, designed to secure the payload during transit and
release it by tilting or lowering at the destination. The platform
is hinged at the back and attached to a standard servo motor,
which is controlled via the microcontroller through a ROS
node to execute pre-programmed movements.

Design considerations for this mechanism included:

1. Low weight to avoid overloading the servo
2. Sufficient clearance from ground and sensors
3. Secure locking during motion to prevent payload

shift

3D printed parts were used to build the lowering tray and
linkages, allowing easy customization and adjustments during
the testing phase.

Mounting points for sensors were carefully designed to
optimize field of view and minimize interference:

1. LIDAR was placed centrally and elevated to provide
an unobstructed 360-degree scan

2. Camera was mounted at the front with a slight
downward tilt to assist in object recognition and path
alignment

3. Ultrasonic sensors were positioned on the front and
sides to detect close-range obstacles

Protective housings were added around fragile components to
shield them from impacts during field operation.

B. Electrical Design Strategy

 Power Supply:

 A pack of four 18650 lithium-ion cells (nominal
14.8V) powers the high-current components,
including the DC motors (via L298N drivers) and the
servo motor. This pack is connected directly to the
motor driver input terminals and a 5V step-down
voltage regulator for peripherals requiring lower
voltages.

Raspberry Pi Power Supply: A 20000mah USB
power bank supplies stable 5V directly to the
Raspberry Pi via its USB-C input. This ensures the Pi
receives uninterrupted and clean power, independent
of the motor power system. This was decided after
realizing it was difficult to get a stable 5v from the
stepped down voltage.

This dual-source architecture provides:

1. Electrical isolation between motors and control
electronics

2. Reduced risk of Pi brownouts during motor spikes
3. Better battery management and modular debugging

A common ground connection is established between both
systems to ensure signal consistency for serial communication
between the Arduino and Raspberry Pi

An onboard power distribution board or wiring hub is used to
split power lines to all components while keeping the system
compact and manageable.

Each pair of DC motors (left and right) is controlled by an
L298N dual H-bridge motor driver. The L298N modules are
responsible for supplying current to the motors and allowing
directional control (forward/reverse) and speed control via
PWM.

To reduce wiring complexity and save microcontroller pins,
the Enable (EN) pins of each motor pair are looped together,
For example:

• EN_A for both left-side motors (looped)
• EN_B for both right-side motors (looped)

This setup allows for synchronized control of each side using
a single PWM signal per side, which simplifies software
control while preserving differential drive behavior.

Motor Driver Wiring:

1. IN1, IN2 → Arduino digital pins (Left motor
direction)

2. IN3, IN4 → Arduino digital pins (Right motor
direction)

3. EN_A, EN_B → Arduino PWM pins
4. 12V/VCC → Battery positive
5. GND → Common ground
6. OUT1–OUT4 → Connected to motors

 Encoder Feedback

The motors are equipped with encoders to provide feedback
for closed-loop control. Each encoder has two channels (A and
B), producing quadrature signals which the Arduino reads to
determine:

1. Wheel rotation direction
2. Speed (by measuring pulse frequency)
3. Distance (by counting pulses)

The encoder data is processed by the Arduino to enable
features like:

JABARI 3 of 5

1. Velocity control (PID)
2. Distance-based movement
3. Odometry for dead-reckoning (if needed by the ROS

stack)

A standard servo motor is used to operate the payload
lowering mechanism. The servo is powered by the 5V
regulated line and is controlled by the Arduino via a single
PWM pin.

1. Signal → Arduino digital PWM pin
2. VCC → 5V regulator output
3. GND → Common ground

The system uses a dual-controller architecture:

• Arduino Uno: Handles low-level motor control,
encoder feedback, and servo actuation

• Raspberry Pi (4/3): Runs ROS 2, manages sensor
processing, navigation algorithms, and decision
making

The Raspberry Pi and Arduino communicate via USB serial or
UART, with the Arduino exposing a custom serial interface
for commands like:

• MOTOR_SPEED(left, right)
• GET_ENCODER_DATA()
• LOWER_PAYLOAD()

ROS 2 nodes on the Pi publish motor commands and
subscribe to encoder data for navigation and SLAM
integration.

C. Software Strategy

The software architecture for the autonomous rover was
designed around the principles of modularity, real-time
performance, and scalability, with a clear separation between
high-level decision-making and low-level hardware control.
The system leverages the capabilities of ROS 2 (Robot
Operating System 2) running on a Raspberry Pi, in
conjunction with an Arduino handling real-time motor and
actuator control.

This division allows the system to perform complex
navigation, mapping, and perception tasks while ensuring fast
and deterministic control of the motors and sensors.

Layered Software Architecture

The software stack is divided into three main layers:

1. Hardware Control Layer (Arduino)
Responsible for motor driving, encoder reading, and
servo actuation. The Arduino exposes a simple serial

interface to receive commands and send sensor
feedback.

2. Robot Operating Layer (ROS 2 on Raspberry Pi)
Manages all sensor inputs (LIDAR, camera,
ultrasonic), mapping, localization, path planning, and
autonomous decision-making using ROS 2 nodes and
standard packages.

3. Communication Layer (Serial Interface)
Facilitates robust data exchange between Raspberry
Pi and Arduino, converting ROS 2 motion commands
into low-level motor control signals and relaying
encoder feedback for localization

The Arduino runs a lightweight firmware loop, written in C++,
to perform the following functions:

• Read encoder pulses using interrupts and compute
speed or position

• Control motor speed and direction via PWM and
digital signals to L298N

• Actuate the servo when commanded for payload
lowering

• Parse serial commands received from the Raspberry
Pi

• Send structured data (e.g., encoder counts, servo
status) back to the Pi at a regular rate

The rover uses LIDAR-based Simultaneous Localization and
Mapping (SLAM) to autonomously build a map of the
environment and localize itself in it. This is implemented
using standard ROS 2 packages such as:

• slam_toolbox or cartographer for 2D mapping
• nav2 stack for localization and navigation
• tf2 for managing coordinate transforms between robot

base, odometry, and map frames

Odometry from the Arduino (based on encoder data) is fused
with LIDAR input to enhance localization accuracy.

The ROS 2 nav2 stack handles the motion planning tasks. It
includes:

1. Global path planner
2. Local planner for obstacle avoidance (e.g., DWB

controller)
3. Cost maps built from LIDAR and ultrasonic data
4. Goal setting from mission control (e.g., move to

drop-off zone)

The camera vision node uses OpenCV (or a pre-trained
lightweight model) to detect objects, align the rover, or verify
drop-off success. Potential vision tasks include:

• Line detection or color tracking
• Object presence verification

JABARI 4 of 5

• Zone identification using April Tags or fiducial
markers

Camera data is processed onboard the Raspberry Pi, and
detection results are used to trigger state transitions in the
mission control logic.

On the laptop, computationally intensive tasks such as SLAM,
the Nav2 navigation stack, and deep learning–based disease
detection are executed. SLAM Toolbox generates a 2D map
from LiDAR and odometry data, while Nav2 handles
localization, global path planning, and obstacle avoidance.
RViz2 provides a graphical interface for visualization and goal
setting, enabling operators to monitor the robot in real time. A
PyTorch-based vision node processes camera images to identify
diseased plants, publishing results for further analysis. This
distributed architecture balances processing loads across the
devices and enables the robot to autonomously explore
environments while contributing to precision agriculture
through plant health monitoring.

D. Experimental Results

To validate the performance, reliability, and integration of

the autonomous rover, a structured testing approach was
adopted. Testing was conducted progressively throughout
development, beginning with individual component
verification (unit testing), followed by system-level integration
and limited field trials. As of the technical design paper
submission, the system has undergone multiple iterations of
hardware-software validation both in simulation and on
physical test environments modeled after the Robotics Dojo
game field.

Unit and Integration Testing

Each major subsystem was first tested independently before
being integrated into the complete system:

1. Motor Control Testing: The Arduino and L298N
motor driver configuration was tested using simple
serial commands to validate direction, speed, and
braking behavior. Encoders were monitored for real-
time feedback accuracy.

2. Sensor Testing: The LIDAR was tested in static and
dynamic environments using ROS 2’s rviz2 to ensure
proper scan generation and data publishing. The
ultrasonic sensors were tested for obstacle detection
thresholds. The camera vision pipeline was validated
with controlled image datasets and real-world
lighting conditions.

3. Servo Actuation: The payload-lowering mechanism
was actuated repeatedly to evaluate response time,
position accuracy, and torque sufficiency under load.

4. Communication Link: Serial communication between
the Raspberry Pi and Arduino was tested under load
conditions, with consistent command execution and
feedback confirmed over extended operation periods.

The team utilized ROS 2 simulation tools (Gazebo) to test core
navigation and perception algorithms in a virtual environment
before deployment. This allowed testing of:

1. SLAM performance in synthetic environments
2. Path planning and obstacle avoidance
3. Mission control state machine transitions
4. Safety overrides based on sensor input

Simulation accelerated development by allowing risk-free
testing of high-level logic and edge cases that would be
difficult to replicate physically.

To date, the rover has undergone over 15 combined hours of
physical testing, spread across motion control tuning, SLAM
trials, and object handling tests. Key milestones achieved
include:

1. Successful 2D mapping of a 3x3 meter test field
using LIDAR and SLAM toolbox

2. Obstacle detection and avoidance using ultrasonic
sensors and costmap integration

3. Reliable point-to-point navigation using ROS 2
nav2 stack

4. Payload pickup and offloading with repeatable servo
actuation

Testing has also helped identify mechanical issues, such as
servo overloading and wheel slippage, which are currently
being addressed in hardware iterations.

Although a full quantitative reliability model has not been
implemented yet, the team has performed several qualitative
assessments and stress tests:

1. Servo Life Testing: The payload mechanism was
cycled over 50 times continuously to check for
mechanical wear or servo overheat. No significant
degradation was observed.

2. Battery Runtime Estimation: Under full operation, the
4x18650 battery pack provides approximately 40–50
minutes of continuous drive and control, depending
on terrain and load.

3. Encoder Signal Stability: The team observed
occasional signal jitter at high speeds, leading to
plans for interrupt signal filtering in future firmware
versions.

4. Structural Robustness: While acrylic was chosen for
prototyping, minor cracks developed under repeated
mechanical stress—indicating a need for additional
reinforcement or material substitution (e.g.,
aluminum or ABS) in future revisions.

JABARI 5 of 5

The team is also exploring simple failure mode scenarios,
such as motor stall, sensor dropout, and communication loss,
to implement recovery strategies (e.g., timeouts,

E. Referees

[1] M. Quigley et al., "ROS: an open-source Robot
Operating System," in ICRA Workshop on Open
Source Software, vol. 3, no. 3.2, 2009.

[2] Open Robotics, "ROS 2 Documentation,"
[Online]. Available:
https://docs.ros.org/en/ros2_documentation/index.ht
ml. [Accessed: Sep. 25, 2025].

[3] S. Kohlbrecher, J. Meyer, O. von Stryk, and U.
Klingauf, "A flexible and scalable SLAM system
with full 3D motion estimation," in Proc. IEEE Int.
Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2011, pp. 155–160.

[4] Google Cartographer, "Cartographer ROS
Integration," [Online]. Available: https://google-
cartographer.readthedocs.io. [Accessed: Sep. 25,
2025].

[5] R. Smits, "Control of a Servo Motor Using
PWM on Arduino," Arduino Project Hub, 2020.
[Online]. Available:
https://create.arduino.cc/projecthub. [Accessed:
Sep. 25, 2025].

[6] Texas Instruments, "L298 Dual Full-Bridge
Driver Datasheet," Texas Instruments, 2005.
[Online]. Available:
https://www.ti.com/lit/ds/symlink/l298.pdf.
[Accessed: Sep. 25, 2025].

[7] OpenCV.org, "OpenCV: Open Source Computer
Vision Library," [Online]. Available:
https://opencv.org/. [Accessed: Sep. 25, 2025].

[8] E. Marder-Eppstein, E. Berger, T. Foote, B.
Gerkey, and K. Konolige, "The Office Marathon:
Robust Navigation in an Indoor Office
Environment," in Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA), 2010, pp. 300–307.

[9] Arduino.cc, "Arduino UNO Technical Specs,"
[Online]. Available:

https://www.arduino.cc/en/Main/ArduinoBoardUno
. [Accessed: Sep. 25, 2025].

[10] Raspberry Pi Foundation, "Raspberry Pi 4
Model B Datasheet," [Online]. Available:
https://www.raspberrypi.com/documentation/compu
ters/raspberry-pi.html. [Accessed: Sep. 25, 2025].

[11] G. Grisetti, C. Stachniss, and W. Burgard,
"Improved Techniques for Grid Mapping with Rao-
Blackwellized Particle Filters," IEEE Trans.
Robotics, vol. 23, no. 1, pp. 34–46, Feb. 2007.

[12] J. Borenstein and Y. Koren, "The Vector Field
Histogram – Fast Obstacle Avoidance for Mobile
Robots," IEEE Trans. Robotics and Automation,
vol. 7, no. 3, pp. 278–288, Jun. 1991.

[13] Intel RealSense, "Intel RealSense Depth
Camera D435i," [Online]. Available:
https://www.intelrealsense.com/depth-camera-
d435i/. [Accessed: Sep. 25, 2025]

