
Neural Knights​ 1 of 11

Autonomous Agricultural Robot for Mapping,
Crop Disease Detection and Object Recognition.

Sandra Keya, Stephen Oduor,Collins Chemweno, Faith Cherotich, Sylvia Waweru

Abstract—This paper describes the design and implementation
of a miniature robot intended for agricultural purposes. The
robot employs SLAM using a 2D lidar sensor sensor to map
unknown environments, while estimating its own position and
orientation within that map. It is also optimized to perform
crop disease detection and to identify potato blight and other
crop diseases in addition to navigation of various kinds of
terrains.

I.​ INTRODUCTION
There has been an increase in reliance on automation to
improve efficiency within agriculture to reduce labor costs
as well as address crop health challenges.There is thus a
growing interest in robotics to not only perform the said
tasks but also to perceive and adapt to their environment in
real time, performing mapping, navigation and disease
detection. The research and development of mobile
autonomous robots has also substantially expanded within
the last decade and continues to increase due to the rapid
advancement in theory and electronic technology. Different
methods of how a robot can navigate through an unknown
structured environment,that is to estimate its current
position and orientation, have been developed. Robot
platforms for SLAM include sensors/systems such as motor
encoders, optical vision, miniature radars and satellite
positioning.Simultaneous Localization and Mapping
(SLAM) enables robots to build a map of an unknown
environment while estimating their own location within it.
Differential-drive robots equipped with sensors such as
LiDAR, cameras, wheel encoders, infrared or laser
rangefinders can navigate in unstructured or semi-structured
agricultural settings. Several prior works use vision or
sensor fusion for leaf disease detection, but often rely on
stationary setups, GPS, or require well-controlled lighting.
In contrast, the advent of smart robotics combined with
Raspberry Pi and LiDARs provides an intelligent and
efficient alternative. In this system, the Raspberry Pi, a
small yet powerful single-board computer, serves as the
central processing unit. It works with a camera and image
processing algorithms to capture and analyze images of
plant leaves to detect signs of diseases such as blights, rusts,
and fungal infections. The system can be configured with
machine learning models or classical image processing
techniques to identify and classify diseases based on visual
symptoms. Once a disease is detected, the system triggers a
real-time alert, and the Raspberry Pi logs the event and can

display or transmit the information via Wifi . Simultaneous
Localization and Mapping enables the robots to build a map
of the unknown field which is especially valuable in
agriculture In agricultural robotics, SLAM supports several
key navigation tasks such as: Autonomous field traversal,
allowing the robot to move through uneven terrain, avoid
obstacles (plants, uneven soil, debris), and follow crop
rows, repeated coverage, where the robot returns to specific
zones (for disease monitoring, spraying, harvesting) with
good positional consistency as well as mapping for
decision-making, where maps show where plants are
missing, areas of disease, or where soil is rough so useful
actions can be taken.Recent studies show that fusing
LiDAR data with wheel odometry (and optionally inertial
sensors) improves navigation reliability. For instance,
research into 2D LiDAR SLAM without needing
GNSS/IMU shows improved robustness in arboreal or
forest-like field situations where GNSS is blocked.

II.​ PROBLEM STATEMENT

Despite significant progress in agricultural automation,
farmers still face challenges in efficiently monitoring crop
health and navigating complex, unstructured farm
environments. Traditional disease detection methods often
rely on manual inspection, stationary imaging setups, or
require controlled conditions, making them impractical for
real-world field deployment. Similarly, navigation of
mobile agricultural robots is limited when dependent solely
on GPS, which suffers from poor reliability under canopy
cover or in semi-structured environments.

There is a need for a low-cost, mobile robotic system that
integrates real-time plant disease detection with robust
navigation using SLAM. Such a system should leverage
affordable hardware (e.g., Raspberry Pi, cameras, LiDAR)
and intelligent algorithms to autonomously traverse fields,
perceive crop conditions under natural lighting, and adapt to
uneven terrain. This would reduce reliance on
labor-intensive monitoring, improve accuracy in detecting
crop diseases, and enable more efficient and data-driven
agricultural management.

Neural Knights​ 2 of 11

III.​ PAPER CONTENTS

A.​ Design Strategy
The competition required us to map the game field, detect

crop diseases, identify cube colors, and reliably unload a
payload, while maintaining robustness throughout
navigation. To achieve this, we began with prototyping the
core subsystems: differential drive with encoder feedback
controlled via Arduino, SLAM mapping with LiDAR,
disease detection through the camera, IR-based payload
detection, and the unloading mechanism. After validating
each subsystem in controlled settings, we gradually
integrated them and tested them in more realistic field
environments. Between tests we refined algorithms, and
adjusted mechanical hardware based on observed failures.
Our strategy emphasizes reliability over adding extra
features: only once core functions are stable do we tune for
efficiency or performance improvements.

B.​ Vehicle Design
Based on our competition requirements, we decided a
miniature robot design would be advantageous because
smaller systems tend to have fewer failure points (less
mechanical complexity, fewer parts to break). We chose a
circular footprint initially: it is compact and, we believed,
would allow the robot to navigate obstacles and turns in the
game field more easily.

Our first mechanical architecture was: two powered
(driven) wheels on the sides, and two castor wheels
(free-spinning) at front and rear to stabilize the robot. This
layout allowed differential drive motion (turning by
differential wheel speeds) and stable support.

However, when we tested the robot attempting to climb a
slight ramp (a feature in the field), we discovered a critical
limitation: the unpowered castor wheel would often lose
traction or slip, preventing the robot from climbing.
Because the castor wheel could not drive, at some
orientations its contact or load wasn’t favorable, leading to
wheel lift or slippage.

In response, we revised our design: the two powered wheels
were moved to the front, and one castor wheel placed at the
back. This redesign ensures that when climbing a ramp, the
powered wheels carry the load and maintain traction, while
the castor wheel acts purely as a support without having to
pull. This layout improved ramp climbing ability while still
keeping the benefits of a compact design.

1.​ Chassis & Structure
​
 We 3D-printed the chassis using polylactic acid (PLA)
filament due to its low cost, ease of fabrication, and
suitability for rapid iteration. The body’s external
dimensions are 29 cm (length) × 21 cm (width) × 24 cm
(height). The chassis houses all key components in a

compact layout, with the center of mass positioned near the
geometric center to promote balance and stability.

2.​ Hardware Components

Wheels & Castor

Drive wheels: We used two off-road wheels (rubber tread)
sized at 85mm diameter, 31mm width, chosen to negotiate
terrain such as sawdust and grass. The tread and soft
compound provide grip on loose surfaces.

Fig. 1. 85 mm rubber wheel

Castor wheel: Rather than using a standard castor, which
may struggle on uneven terrain, we designed a custom
castor wheel holder and selected a rubber wheel for the
castor. This design improves rolling and stability on rough
terrain and avoids binding in soft ground.

Fig. 2. Castor wheel CAD design

Neural Knights​ 3 of 11

Motors & Drivers​
We selected the JGB37-520 motor series. These motors run
on 12 V and deliver a torque of ~1.5 kg·cm in some
variants. They come with dual-phase Hall encoders,
enabling closed-loop control via Arduino.

Fig. 3. Double BTS7960 Motor Driver Module

Fig. 4. JGB37-520 motor

The Double BTS7960 43A H-Bridge High-Power Stepper
Motor Driver Module is; a fully integrated high current H

bridge for motor drive applications using the BTS7960 high
current half bridge. The BTS7960 is part of the
NovalithICTM family. This contains one p-channel high
side MOSFET and one n-channel low side MOSFET; with
an integrated driver IC in one package. Due to the
p-channel high side switch; the need for a charge pump is
eliminated thus minimizing EMI.

Interfacing to a microcontroller is made easy by the
integrated driver IC which features logic level inputs;
diagnosis with current sense, slew rate adjustment; dead
time generation and protection against over temperature,
overvoltage, under voltage; overcurrent, and short circuit.

3.​ Control Architecture

Low-level / Medium-level controller

Arduino Mega 2560​
  The Arduino Mega 2560 (ATmega2560) was selected for
its abundant I/O (54 digital pins, 15 PWM outputs, 16
analog inputs, 4 hardware UARTs, etc.). It handles the
motor driver control (PWM, direction), encoder feedback,
servo control, and IR sensor input.

Fig. 5. Arduino Mega with USB cable

High-level controller
Raspberry Pi 4 Model B

The Raspberry Pi 4 is used for high-level tasks: camera
image capture, color detection, SLAM, path planning, and
issuing high-level commands to the Arduino. It features a
quad-core 1.8 GHz CPU, up to 8 GB RAM, dual
micro-HDMI, CSI camera interface, and full Linux stack

Neural Knights​ 4 of 11

Fig. 6. Raspberry Pi 4

4.​ Sensors & Perception

Raspberry Pi Camera v2​
 This camera features an 8 MP Sony IMX219 sensor,
connected via a 15 cm ribbon cable to the Pi’s CSI port. It is
used for color detection, disease identification, and object
(cube) color classification.

Fig 7. Raspberry Pi Camera Model 2

LiDAR​
A 2D rotating LiDAR is mounted at a suitable height and
orientation (on a dedicated holder) to scan the environment
and support SLAM and obstacle detection.​

Fig 8. LiDAR with connecting wires

5.​ Component Placement

On the base platform we mounted:

●​ Arduino Mega 2560 – Handles low-level sensor
control, motor commands, and communicates with
the Raspberry Pi.

●​ Battery pack – Three Li-ion cells in series
(nominal 12.6 V).

●​ Payload / unloading box assembly – Includes the
micro-servo for actuating the unloading
mechanism.​

Below the base, adjacent to each drive wheel, we placed:

●​ JGB37-520 12 V DC geared / encoder motor​

●​ BTS7960 high-power motor driver for each motor
●​ An XL4015 buck converter to step down voltage

for sensors / logic circuits​

Above the base, we added a secondary platform supporting:

●​ LiDAR in a dedicated holder, at a height and
orientation optimized for scanning the
environment

●​ Raspberry Pi 4, the main processing unit
●​ Pi Camera v2 in a holder with appropriate field of

view for crop disease / color detection
●​ A power bank beneath the Pi to provide stable 5 V

power to the Pi and camera module​

Neural Knights​ 5 of 11

Additionally, we mounted an infrared (IR) object detection
sensor on the loading platform to sense when a payload
cube is placed. Its digital output signals the control system
to proceed with the unloading routine.

6.​ Power & Voltage Regulation

The main battery delivers ~12.6 V fully charged; this rail
feeds the motor drivers directly. For lower-voltage
components (sensors, logic), the XL4015 buck converter
steps down the voltage. This ensures stable and safe supply
levels for sensitive electronics. The wiring is done to
minimize voltage drop and uses proper gauge wires.

7.​ Mounting & Mechanical Interfaces

Each motor is mounted securely to the chassis using
brackets and couplers to minimize misalignment and
vibration. The LiDAR, camera, and sensors are fixed using
holders that maintain orientation and line-of-sight. The
unloading servo is attached to the payload box and is
mechanically robust to avoid binding.

8.​ Mass Distribution & Stability

We measured the weight of all components (PLA body,
motors, electronics, battery, sensors). We balanced the
layout such that no side is overloaded, and the chassis
height is kept moderate to reduce torque about the ground
(less tipping). This configuration helps maintain traction,
especially when ascending ramps.

9.​ Safety, Thermal, and Robustness

The motor driver and buck converter are mounted with
thermal dissipation in mind.​
We included simple protective measures (e.g., fuses) to
prevent damage from overcurrent or short circuits.​
Structural rigidity is verified so that under vibration or
slight impacts, nothing loosens.​
We sealed or protected open components from dust and
debris to maintain performance in field conditions.​

10.​ Design Tradeoffs & Alternatives Considered

​
We considered using acrylic material for higher strength,
but decided on PLA to allow rapid prototyping and weight
savings. We also considered more powerful motors or
higher current drivers, but these would increase cost,
weight, and power consumption. In early tests, some
heavier motor-driver combinations led to overheating; thus
we settled on the current configuration which balances
power and reliability.

Schematic Diagram

Fig 9. Schematic Diagram showing connection of
components

Above is a schematic diagram demonstrating the low -level
control via the Arduino Mega and all the sensors it is
controlling.
It demonstrates connection of one of the motors to the
Arduino Mega.

C.​ The software

This chapter presents the design and implementation of the
software architecture for an autonomous mobile robot
system developed on ROS 2 Humble Hawksbill. The
system adopts a modular architecture inspired by the
workflow popularized by Articulated Robotics,
emphasizing simulation-first validation and seamless
transition to hardware deployment. The robot employs a 2D
LiDAR sensor for environmental perception, enabling
incremental map construction and real-time obstacle
detection. Navigation is managed by the Nav2 stack, which
provides global path planning, local trajectory following,
and dynamic obstacle avoidance.
System validation and parameter tuning were initially
conducted in Gazebo simulation, where a URDF model was
defined, controller interfaces were configured, and
ros2_control parameters were verified prior to hardware
integration. By following a staged methodology simulation,
parameter optimization, and hardware deployment the
development process minimizes integration risks, ensures
consistency between virtual and physical environments, and
allows rigorous testing of navigation modules.

1.​ Software Architecture
The software architecture is organized around a ROS 2
node graph that separates sensing, planning, control, and
actuation, with a bridging layer connecting ROS 2 to the
Arduino microcontroller. YAML configuration files load the
diff_drive_controller and joint_state_broadcaster, while the

Neural Knights​ 6 of 11

gazebo_ros2_control plugin instantiates the controller
manager and links simulated joints to ROS 2 controllers.
LiDAR data is exposed to ROS 2 via Gazebo plugins,
publishing LaserScan messages that feed directly into the
navigation stack. The Nav2 framework subscribes to sensor
topics and publishes velocity commands, which are relayed
to the Arduino bridge. The bridge transmits these
commands to the motor hardware and publishes odometry
feedback back into ROS 2. The system is built on ROS 2
Humble Hawksbill , chosen for its long-term support,
compatibility with Ubuntu 22.04, and widespread adoption
in both research and industry. ROS 2 provides modern
features such as improved middleware, enhanced
quality-of-service policies, and distributed system support,
making it well suited for complex autonomous robotic
systems.

In the developed robot, the LiDAR node publishes /scan
data, which is consumed by both the SLAM and Nav2
nodes. Nav2 generates velocity commands (/cmd_vel),
which are transmitted to the motor drivers via the
ros_arduino_bridge. The Arduino firmware handles
low-level motor control and sensor feedback, while the
bridge publishes odometry back into ROS 2. During testing,
teleoperation and the joint_state_publisher were employed
to validate odometry and verify system behavior. This
bridging strategy ensures that the same navigation and
perception stack validated in simulation can be deployed to
hardware with minimal modification.

2.​ Software Implementation and Validation
The robot was modeled using URDF/Xacro, which defined
its geometry, joints, and sensors for both simulation and
deployment. Python-based launch files were developed to
configure Gazebo simulation, RViz visualization, and
hardware execution. Controller parameters such as wheel
separation and PID gains were stored in YAML files, while
the ros_arduino_bridge was implemented in C++.
Validation followed a simulation-first approach. In Gazebo
and RViz, the accuracy of the model, transforms, sensor
data publishing, and navigation performance were verified
using Nav2 for mapping, planning, and obstacle avoidance.
Once validated in simulation, the same codebase was
deployed to the physical robot, where trajectory tracking,
odometry accuracy, and navigation reliability were tested.
Minor discrepancies, primarily caused by serial latency and
parameter mismatches, were iteratively refined until the
system achieved stable performance.

Fig. 10. Diagram showing the URDF spawned in gazebo

Fig. 11. Diagram showing the robot navigating a gamefield

in gazebo

3.​ Results
The results demonstrated low communication latency
between ROS 2 nodes, the Arduino bridge, and the
firmware. Navigation commands were executed with
minimal delay, enabling smooth motion even during
frequent updates from the local planner. Several iterations
of parameter tuning were required to achieve consistent
navigation accuracy. Adjusting the robot radius parameter
was critical to ensure that Nav2’s planners respected the
robot’s footprint, while tuning the wheel separation
parameter aligned simulated kinematics with real-world
behavior.
After refinement, the robot achieved reliable path
following, stable obstacle avoidance, and accurate
odometry. In simulation, path tracking error remained
within a small margin of truth, while hardware tests
confirmed sufficient accuracy for SLAM and navigation in
structured indoor environments.

Neural Knights​ 7 of 11

Fig. 12. Diagram showing the map generated during a
practise run in gazebo

4.​ Challenges and Solutions

Several challenges were encountered during development.
Early attempts to use WSL on Windows introduced high
communication latency and frequent build errors, which
were resolved by migrating to a native Ubuntu installation
for full ROS 2 compatibility. Cross-compilation on the
Raspberry Pi also posed difficulties, as many packages
compiled successfully on x86 but failed on ARM64. This
was addressed by excluding non-essential packages,
allowing navigation and control components to compile
successfully.
Another challenge involved integrating the
ros_arduino_bridge with the URDF and navigation stack,
where mismatches between simulation and hardware
behavior arose from synchronization issues. These were
resolved through iterative parameter tuning, particularly of
wheel separation and robot radius, and by leveraging
knowledge sharing with peers. Through these solutions, the
software stack was stabilized across both simulation and
hardware platforms.

5.​ Conclusions
The development of the robot’s software architecture
demonstrates the effectiveness of a simulation-first
methodology combined with a modular ROS 2 framework.
By validating the system in Gazebo prior to hardware
deployment, integration risks were minimized, and
discrepancies between simulated and real-world
performance were addressed. The use of ROS 2 Humble,
together with the Nav2 navigation stack and the
ros_arduino_bridge, enabled a clean separation between
high-level autonomy and low-level control, ensuring
portability and reproducibility.
The results confirm that careful parameter tuning,
particularly of robot radius and wheel separation, is
essential for achieving accurate navigation and odometry.

D.​ Disease Detection Model using OpenCV
Once we had the navigation done, we proceeded to
experiment with training a simple disease detection model
using frames of plant leaves. The model was written using
python and various libraries like TensorFlow and NumPy
for the training. We used a simple data set of about 10
healthy plants and 10 diseased plants to train the model. On
application the model was fairly accurate and was able to
correctly classify a test image which was diseased.

Fig. 13. Sample CV model to classify plant leaves as
diseased or healthy

We later obtained a pre-trained model that classified the
frames of the potato leaves into healthy, early blight and
late blight. We tested the model and integrated it with the Pi
camera feed, which is talked about in the sections that
follow.

1.​ Camera Integration
For the competition we were required to use the Raspberry
Pi camera to run computer vision models for detecting
disease in potato plants. The model was trained to detect
whether the potato plant was healthy, had Early blight or
Late blight based on frames taken of the leaves of the
plant. The camera was also to be used for color detection
which was to be integrated with the picking up and
dropping of the cube mechanism. In summary the camera
was required to detect the presence of the cube on our
carriage mechanism as well as its color and match it with
the color code of the dropping area. If the colors matched
the camera would publish a boolean true which would
initiate the actuation of the dropping mechanism.

2.​ Camera Testing
Once we connected the camera, we SSH’d into the Pi and
checked that the camera was detected by running the
command; ls /dev/video*. This command lists the available
video devices, the first (index0) of which being the camera
and the rest used to generate metadata for the photos and
videos generated by the camera. We then run commands to
take pictures which were saved on the Pi.

3.​ Video Stream
For the video stream we had two options;

Neural Knights​ 8 of 11

●​ Using the built-in rQt GUI interface to see the
video stream.

●​ Using a webpage to access the video stream and
include functionalities such as taking snapshots
and recording video frames.

Both options were feasible, however we decided to go with
the second one, specifically using Flask to design a simple
webpage that would run on a localhost port to access the
video stream. This allowed us to access the stream from any
device as well as to customize the page for functions we
would need in the future.

4.​ Potato Disease Detection Model
Once the video stream was running, we linked the python
video stream script with the ROS disease detection model
by publishing streams to the /image node of the disease
detection model. On clicking record stream, the stream
starts publishing frames to the node which listens for frames
that are then run through the model and the result streamed
in logs on the raspberry pi ros workspace. The model
detects whether the leaf is healthy, has early blight or late
blight.

5.​ Color and Object Detection
We used a separate script for color detection of the frames.
The script runs on Open CV and checks the pixels of the
frame against a presaved set of colors using the HSV
model. The following pictures show the model in action
showing results for the colors; yellow, green and red.

Fig. 14. Color detection model using the Raspberry Pi
Camera

We were also able to run a simple cube detection model
which detects the presence of cube by analyzing sharp
edges that contrast with the background as well as running
the previous color detection model on the detected cube.
This model will be improved and applied to detect once the
cube has been placed on our carriage mechanism and the
color of the cube to be able to compare it with the color
code of the dropping area. The following pictures show the
model in action.

Fig. 15. Testing cube and color detection model using
OpenCV

6.​ Results from Camera and Computer Vision Model
Tests and Planned Integration

Potato Disease Detection Model

The potato disease detection model had positive results on
testing with the model being fairly accurate in detecting
healthy potato leaves. For leaves with early blight that had
few spots, the accuracy of the model was a bit low but for
leaves with late blight or leaves with pronounced spots that
are still in early blight, the model was able to classify them
accurately. Further training of the model with a greater
data-set is planned to improve the accuracy of the model.

Color and Cube Detection Model
The color detection model showed high accuracy especially
since the range of colors was limited to the primary colors
and colors like green, purple etc which are easily detectable
especially if converted to the HSV format.

The cube detection model was also fairly accurate with just
a few instances where areas with noise in the frame were
detected as cubes. We improved the model to ignore
sections with small pixels that seem to be noise and focus
on large sections having pixels that are similar in color. This
greatly improved the accuracy of the model. In terms of
detecting the color of the cube the model had exceptional
accuracy.

Neural Knights​ 9 of 11

Planned Integration
With the individual potato-disease detection model and the
object and color detection model working well, the next
plan is integrating the systems with the SLAM and the
dropping mechanism using the servo-motor and IR sensor

E.​ Experimental setup

We have tested and tried various aspects of the robot
including the design of the body, the material for the robot
body, the architecture of the dropping mechanism and use
of a custom castor wheel. These are discussed below;

1.​ The body
Initially our robot design was circular, having two motor
driven wheels along the diameter of the bottom platform
and two custom designed rubber castor wheels. The motion
of the design was mostly smooth however on testing the
robot on a ramp we realized the robot couldn’t climb a
ramp.

Fig. 16. First CAD design of robot

We decided to change our design from a circular one with
the driven wheels along the diameter and pushed the driven
wheels further behind. This enabled the wheels to keep in
contact with the ground even while the robot was climbing
the ramp.

The following pictures show the new design and the
redesign of the base to enable the robot to easily climb the
ramp. We also added more holes on the base platform to
improve our cable management.

●​ Fig. 17. Redesigned robot base with wheels placed
further from the center

Fig. 18. New Robot Design

2.​ Material Selection for the Robot

For the material of the robot platforms we had two options;

1.​ Using 3D printed PLA (Polylactic Acid)
2.​ Using Acrylic cut using LASER cutting

We experimented with Acrylic platforms and found that
they were relatively strong and had great structural
integrity. A downside we noticed was the pillars were their
stability. Since the acrylic was just 5mm thin the pillars
were relatively unstable compared to 3D printed pillars. We
also realized 3D printed parts adhered better with each other
when using hot glue as compared with acrylic. These
considerations made us choose 3D printing instead of using
acrylic.

3.​ Custom Castor Wheel Design
As part of the agricultural application of the robot project,
the game plan of the robot has different terrains including

Neural Knights​ 10 of 11

sawdust and grass. These different terrains require rubber
tyres since they have enough friction to be able to navigate
the terrain. This consideration led us to designing a custom
castor wheel design that would use a rubber wheel. The
castor wheel design was 3D printed having three parts, the
castor wheel pin, the castor wheel holder and the wheel
holder. A 6001 bearing was used to enable the smooth
circular motion and the 3D printed parts were designed
around it.

.

Fig. 19. 6001 ball bearing

The following pictures show the castor wheel design, its
assembly and the 3D printing process.

Fig. 20. Castor Wheel Design

Fig. 21. Castor wheel design slicing for 3D printing using

Prusa Slicer

F.​ Challenges faced
●​ First time experience. Since this was our first time

experience in the Robotics Dojo competition for
our group, we had to learn most of the concepts
from scratch which was a slight challenge.

●​ Limited funds. We had to buy components within
the budget we were allocated which forced us to
design some components and also use 3D printed
parts for the platforms as well rather than acrylic.

●​ Limited time allocated. The allocated time of one
month to complete the project proved to be quite a
challenge especially with all the concepts that
required to be integrated with the robot.

G.​ Acknowledgement
We would like to express our gratitude to the Japan
International Corporation Agency (JICA) for sponsoring
this program and providing all the essential components and
for the Jomo Kenyatta University of Agriculture and
Technology for providing a venue for the competition. We
thank the Robotics Dojo intern team and Lenny Nganga,
for their support and mentorship. We are also grateful for
the blogs that they provided regarding various topics on
their substack. We would also like to appreciate Articulated
Robotics for all his YouTube videos and blogs that have
been instrumental in our journey. We are also grateful for
Brian Fundi and Nathan Machira ,fellow competitors, for
their unwavering assistance, support and feedback

Neural Knights​ 11 of 11

H.​ References
[1] Articulated Robotics, ROS 2 Tutorials and Guides

[Online]. Available: https://articulatedrobotics.xyz/
[2] S. Macenski, F. Martín, R. White, and J. Ginés

Clavero, “The Nav2 project: ROS 2 navigation system,”
Proceedings of ROSCon, 2020.

[3] N. Koenig and A. Howard, “Design and use
paradigms for Gazebo, an open-source multi-robot
simulator,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2149–2154,
2004.

[4] ROS 2 Control Working Group, ros2_control
Documentation [Online]. Available: https://control.ros.org/

[5] Open Robotics, ROS 2 Humble Hawksbill
Documentation,[Online],Available:https://docs.ros.org/en/h
umble/

[6] M. Ferguson, ros_arduino_bridge Package. [Online].
Available: https://wiki.ros.org/ros_arduino_bridge

[7] Robotics Dojo, "Robotics Dojo," Substack..
Available: https://roboticsdojo.substack.com/.

[8] Danilo Gervasio, (2022 October). Design and
development of an Autonomous Mobile Robot (AMR)
based on a ROS controller, [Online], Available:
https://thesis.unipd.it/retrieve/dfe158de-ec8a-41d3-a9b9-68
54970fbf38/Gervasio_Danilo.pdf

[9] B. Satish Chandra, M. Shiva Kumar, P. Vaishnavi, P.
Rahul, P. Dayakar, (2025 June). Smart Robot for Plant
Disease,Detection,[Online],Available:
https://restpublisher.com/wp-content/uploads/2025/06/18.-S
mart-Robot-for-Plant-Disease-Detection.pdf?utm

[10] Computer Vision Tutorial - GeeksforGeeks [Online].
Available;
https://www.geeksforgeeks.org/computer-vision/computer-v
ision/

[11] OpenCV contour-based color detection in Python —
GeeksforGeeks,[Online].Available:
https://www.geeksforgeeks.org/computer-vision/computer-v
ision/

[12] ROS 2 rqt plugin development — ROS 2
Documentation,[Online],Available:
https://docs.ros.org/en/rolling/Tutorials/GUI/Tutorials/rqt.ht
ml

[13] Smith, J.; Kumar, SLAM for agricultural robotics:
fusing LiDAR and vision sensors — A. Journal of Field
Robotics, 2023.

https://articulatedrobotics.xyz/
https://control.ros.org/
https://docs.ros.org/en/humble/
https://docs.ros.org/en/humble/
https://wiki.ros.org/ros_arduino_bridge
https://roboticsdojo.substack.com/
https://thesis.unipd.it/retrieve/dfe158de-ec8a-41d3-a9b9-6854970fbf38/Gervasio_Danilo.pdf
https://thesis.unipd.it/retrieve/dfe158de-ec8a-41d3-a9b9-6854970fbf38/Gervasio_Danilo.pdf
https://restpublisher.com/wp-content/uploads/2025/06/18.-Smart-Robot-for-Plant-Disease-Detection.pdf?utm
https://restpublisher.com/wp-content/uploads/2025/06/18.-Smart-Robot-for-Plant-Disease-Detection.pdf?utm
https://www.geeksforgeeks.org/computer-vision/computer-vision/
https://www.geeksforgeeks.org/computer-vision/computer-vision/
https://www.geeksforgeeks.org/computer-vision/computer-vision/
https://www.geeksforgeeks.org/computer-vision/computer-vision/
https://docs.ros.org/en/rolling/Tutorials/GUI/Tutorials/rqt.html
https://docs.ros.org/en/rolling/Tutorials/GUI/Tutorials/rqt.html

	Autonomous Agricultural Robot for Mapping, Crop Disease Detection and Object Recognition.
	I.​INTRODUCTION
	II.​PROBLEM STATEMENT
	III.​PAPER CONTENTS
	A.​Design Strategy
	B.​Vehicle Design
	1.​ Chassis & Structure
	2.​Hardware Components
	3.​Control Architecture
	4.​Sensors & Perception
	
	5.​Component Placement
	6.​Power & Voltage Regulation
	The main battery delivers ~12.6 V fully charged; this rail feeds the motor drivers directly. For lower-voltage components (sensors, logic), the XL4015 buck converter steps down the voltage. This ensures stable and safe supply levels for sensitive electronics. The wiring is done to minimize voltage drop and uses proper gauge wires.
	7.​Mounting & Mechanical Interfaces
	Each motor is mounted securely to the chassis using brackets and couplers to minimize misalignment and vibration. The LiDAR, camera, and sensors are fixed using holders that maintain orientation and line-of-sight. The unloading servo is attached to the payload box and is mechanically robust to avoid binding.
	8.​Mass Distribution & Stability
	9.​Safety, Thermal, and Robustness
	10.​Design Tradeoffs & Alternatives Considered

	C.​The software
	1.​Software Architecture
	2.​Software Implementation and Validation
	3.​Results
	4.​Challenges and Solutions
	
	5.​Conclusions

	D.​Disease Detection Model using OpenCV
	
	1.​Camera Integration
	
	2.​Camera Testing
	3.​Video Stream
	
	4.​Potato Disease Detection Model
	5.​Color and Object Detection
	6.​Results from Camera and Computer Vision Model Tests and Planned Integration

	E.​Experimental setup
	We have tested and tried various aspects of the robot including the design of the body, the material for the robot body, the architecture of the dropping mechanism and use of a custom castor wheel. These are discussed below;
	1.​The body

	
	Fig. 16. First CAD design of robot
	
	We decided to change our design from a circular one with the driven wheels along the diameter and pushed the driven wheels further behind. This enabled the wheels to keep in contact with the ground even while the robot was climbing the ramp.
	
	The following pictures show the new design and the redesign of the base to enable the robot to easily climb the ramp. We also added more holes on the base platform to improve our cable management.
	
	
	
	●​Fig. 17. Redesigned robot base with wheels placed further from the center
	
	
	
	Fig. 18. New Robot Design
	
	
	2.​Material Selection for the Robot

	For the material of the robot platforms we had two options;
	1.​Using 3D printed PLA (Polylactic Acid)
	2.​Using Acrylic cut using LASER cutting
	
	
	3.​Custom Castor Wheel Design

	.
	
	Fig. 19. 6001 ball bearing
	
	The following pictures show the castor wheel design, its assembly and the 3D printing process.
	
	
	
	
	Fig. 20. Castor Wheel Design
	
	Fig. 21. Castor wheel design slicing for 3D printing using Prusa Slicer
	F.​Challenges faced
	G.​Acknowledgement
	H.​References

