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Abstract—This paper describes the design and implementation 
of a miniature robot intended for agricultural purposes. The 
robot employs SLAM using a 2D lidar sensor sensor to map 
unknown environments, while estimating its own position and 
orientation within that map. It is also optimized to perform 
crop disease detection and to identify potato blight and other 
crop diseases in addition to navigation of various  kinds of 
terrains. 
 

I.​ INTRODUCTION 
There has been an increase in reliance on automation to 
improve efficiency within agriculture to reduce labor costs 
as well as address crop health challenges.There is thus a 
growing interest in robotics to not only perform the said 
tasks but also to perceive and adapt to their environment in 
real time, performing mapping, navigation and disease 
detection. The research and development of mobile 
autonomous robots has also substantially expanded within 
the last decade and continues to increase due to the rapid 
advancement in theory and electronic technology. Different 
methods of how a robot can navigate through an unknown 
structured environment,that is to estimate its current 
position and orientation, have been developed. Robot 
platforms for SLAM include sensors/systems such as motor 
encoders, optical vision, miniature radars  and satellite 
positioning.Simultaneous Localization and Mapping 
(SLAM) enables robots to build a map of an unknown 
environment while estimating their own location within it. 
Differential-drive robots equipped with sensors such as 
LiDAR, cameras, wheel encoders, infrared or laser 
rangefinders can navigate in unstructured or semi-structured 
agricultural settings. Several prior works use vision or 
sensor fusion for leaf disease detection, but often rely on 
stationary setups, GPS, or require well-controlled lighting. 
In contrast, the advent of smart robotics combined with 
Raspberry Pi and LiDARs provides an intelligent and 
efficient alternative. In this system, the Raspberry Pi, a 
small yet powerful single-board computer, serves as the 
central processing unit. It works with a camera and image 
processing algorithms to capture and analyze images of 
plant leaves to detect signs of diseases such as blights, rusts, 
and fungal infections. The system can be configured with 
machine learning models or classical image processing 
techniques to identify and classify diseases based on visual 
symptoms. Once a disease is detected, the system triggers a 
real-time alert, and the Raspberry Pi logs the event and can 

display or transmit the information via Wifi . Simultaneous 
Localization and Mapping enables the robots to build a map 
of the unknown field which is especially valuable in 
agriculture In agricultural robotics, SLAM supports several 
key navigation tasks such as: Autonomous field traversal, 
allowing the robot to move through uneven terrain, avoid 
obstacles (plants, uneven soil, debris), and follow crop 
rows, repeated coverage, where the robot returns to specific 
zones (for disease monitoring, spraying, harvesting) with 
good positional consistency as well as mapping for 
decision-making, where maps show where plants are 
missing, areas of disease, or where soil is rough  so useful 
actions can be taken.Recent studies show that fusing 
LiDAR data with wheel odometry (and optionally inertial 
sensors) improves navigation reliability. For instance, 
research into 2D LiDAR SLAM without needing 
GNSS/IMU shows improved robustness in arboreal or 
forest-like field situations where GNSS is blocked.  
 

II.​ PROBLEM STATEMENT 

Despite significant progress in agricultural automation, 
farmers still face challenges in efficiently monitoring crop 
health and navigating complex, unstructured farm 
environments. Traditional disease detection methods often 
rely on manual inspection, stationary imaging setups, or 
require controlled conditions, making them impractical for 
real-world field deployment. Similarly, navigation of 
mobile agricultural robots is limited when dependent solely 
on GPS, which suffers from poor reliability under canopy 
cover or in semi-structured environments. 

There is a need for a low-cost, mobile robotic system that 
integrates real-time plant disease detection with robust 
navigation using SLAM. Such a system should leverage 
affordable hardware (e.g., Raspberry Pi, cameras, LiDAR) 
and intelligent algorithms to autonomously traverse fields, 
perceive crop conditions under natural lighting, and adapt to 
uneven terrain. This would reduce reliance on 
labor-intensive monitoring, improve accuracy in detecting 
crop diseases, and enable more efficient and data-driven 
agricultural management. 
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III.​ PAPER CONTENTS 
 

A.​ Design Strategy 
The competition required us to map the game field, detect 

crop diseases, identify cube colors, and reliably unload a 
payload, while maintaining robustness throughout 
navigation. To achieve this, we began with prototyping the 
core subsystems: differential drive with encoder feedback 
controlled via Arduino, SLAM mapping with LiDAR, 
disease detection through the camera, IR-based payload 
detection, and the unloading mechanism. After validating 
each subsystem in controlled settings, we gradually 
integrated them and tested them in more realistic field 
environments. Between tests we refined algorithms, and 
adjusted mechanical hardware based on observed failures. 
Our strategy emphasizes reliability over adding extra 
features: only once core functions are stable do we tune for 
efficiency or performance improvements. 

B.​ Vehicle Design 
Based on our competition requirements, we decided a 
miniature robot design would be advantageous because 
smaller systems tend to have fewer failure points (less 
mechanical complexity, fewer parts to break). We chose a 
circular footprint initially: it is compact and, we believed, 
would allow the robot to navigate obstacles and turns in the 
game field more easily. 
 
Our first mechanical architecture was: two powered 
(driven) wheels on the sides, and two castor wheels 
(free-spinning) at front and rear to stabilize the robot. This 
layout allowed differential drive motion (turning by 
differential wheel speeds) and stable support. 
 
However, when we tested the robot attempting to climb a 
slight ramp (a feature in the field), we discovered a critical 
limitation: the unpowered castor wheel would often lose 
traction or slip, preventing the robot from climbing. 
Because the castor wheel could not drive, at some 
orientations its contact or load wasn’t favorable, leading to 
wheel lift or slippage. 
 
In response, we revised our design: the two powered wheels 
were moved to the front, and one castor wheel placed at the 
back. This redesign ensures that when climbing a ramp, the 
powered wheels carry the load and maintain traction, while 
the castor wheel acts purely as a support without having to 
pull. This layout improved ramp climbing ability while still 
keeping the benefits of a compact design. 
 

1.​  Chassis & Structure 
​
 We 3D-printed the chassis using polylactic acid (PLA) 
filament due to its low cost, ease of fabrication, and 
suitability for rapid iteration. The body’s external 
dimensions are 29 cm (length) × 21 cm (width) × 24 cm 
(height). The chassis houses all key components in a 

compact layout, with the center of mass positioned near the 
geometric center to promote balance and stability. 
 

2.​ Hardware Components 
 

Wheels & Castor 
 
Drive wheels: We used two off-road wheels (rubber tread) 
sized at 85mm diameter, 31mm width, chosen to negotiate 
terrain such as sawdust and grass. The tread and soft 
compound provide grip on loose surfaces. 
 
 

 
Fig. 1. 85 mm rubber wheel 

 
Castor wheel: Rather than using a standard castor, which 
may struggle on uneven terrain, we designed a custom 
castor wheel holder and selected a rubber wheel for the 
castor. This design improves rolling and stability on rough 
terrain and avoids binding in soft ground.  
 

 
Fig. 2. Castor wheel CAD design 
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Motors & Drivers​
We selected the JGB37-520 motor series. These motors run 
on 12 V and deliver a torque of ~1.5 kg·cm in some 
variants. They come with dual-phase Hall encoders, 
enabling closed-loop control via Arduino. 
   

 
 

Fig. 3. Double  BTS7960 Motor Driver Module 
 

 
Fig. 4. JGB37-520 motor 

 
 
The Double BTS7960 43A H-Bridge High-Power Stepper 
Motor Driver Module is; a fully integrated high current H 

bridge for motor drive applications using the BTS7960 high 
current half bridge. The BTS7960 is part of the 
NovalithICTM family. This contains one p-channel high 
side MOSFET and one n-channel low side MOSFET; with 
an integrated driver IC in one package. Due to the 
p-channel high side switch; the need for a charge pump is 
eliminated thus minimizing EMI. 
 
Interfacing to a microcontroller is made easy by the 
integrated driver IC which features logic level inputs; 
diagnosis with current sense, slew rate adjustment; dead 
time generation and protection against over temperature, 
overvoltage, under voltage; overcurrent, and short circuit. 
 

3.​ Control Architecture 

Low-level / Medium-level controller  

Arduino Mega 2560​
  The Arduino Mega 2560 (ATmega2560) was selected for 
its abundant I/O (54 digital pins, 15 PWM outputs, 16 
analog inputs, 4 hardware UARTs, etc.). It handles the 
motor driver control (PWM, direction), encoder feedback, 
servo control, and IR sensor input. 

 

 
Fig. 5. Arduino Mega with USB cable 

 
High-level controller 
Raspberry Pi 4 Model B 
 
The Raspberry Pi 4 is used for high-level tasks: camera 
image capture, color detection, SLAM, path planning, and 
issuing high-level commands to the Arduino. It features a 
quad-core 1.8 GHz CPU, up to 8 GB RAM, dual 
micro-HDMI, CSI camera interface, and full Linux stack 
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Fig. 6. Raspberry Pi 4 

 
 

4.​ Sensors & Perception 

Raspberry Pi Camera v2​
 This camera features an 8 MP Sony IMX219 sensor, 
connected via a 15 cm ribbon cable to the Pi’s CSI port. It is 
used for color detection, disease identification, and object 
(cube) color classification. 

 
 

 
Fig 7. Raspberry Pi Camera Model 2 

LiDAR​
A 2D rotating LiDAR is mounted at a suitable height and 
orientation (on a dedicated holder) to scan the environment 
and support SLAM and obstacle detection.​
 

 

 
 

Fig 8. LiDAR with connecting wires 

 
5.​ Component Placement  

On the base platform we mounted: 

●​ Arduino Mega 2560 – Handles low-level sensor 
control, motor commands, and communicates with 
the Raspberry Pi. 

●​ Battery pack – Three Li-ion cells in series 
(nominal 12.6 V). 

●​ Payload / unloading box assembly – Includes the 
micro-servo for actuating the unloading 
mechanism.​
 

Below the base, adjacent to each drive wheel, we placed: 

●​ JGB37-520 12 V DC geared / encoder motor​
 

●​ BTS7960 high-power motor driver for each motor 
●​ An XL4015 buck converter to step down voltage 

for sensors / logic circuits​
 

Above the base, we added a secondary platform supporting: 

●​ LiDAR in a dedicated holder, at a height and 
orientation optimized for scanning the 
environment 

●​ Raspberry Pi 4, the main processing unit 
●​ Pi Camera v2 in a holder with appropriate field of 

view for crop disease / color detection 
●​ A power bank beneath the Pi to provide stable 5 V 

power to the Pi and camera module​
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Additionally, we mounted an infrared (IR) object detection 
sensor on the loading platform to sense when a payload 
cube is placed. Its digital output signals the control system 
to proceed with the unloading routine. 

6.​ Power & Voltage Regulation 

The main battery delivers ~12.6 V fully charged; this rail 
feeds the motor drivers directly. For lower-voltage 
components (sensors, logic), the XL4015 buck converter 
steps down the voltage. This ensures stable and safe supply 
levels for sensitive electronics. The wiring is done to 
minimize voltage drop and uses proper gauge wires. 

7.​ Mounting & Mechanical Interfaces 

Each motor is mounted securely to the chassis using 
brackets and couplers to minimize misalignment and 
vibration. The LiDAR, camera, and sensors are fixed using 
holders that maintain orientation and line-of-sight. The 
unloading servo is attached to the payload box and is 
mechanically robust to avoid binding. 

8.​ Mass Distribution & Stability 

We measured the weight of all components (PLA body, 
motors, electronics, battery, sensors). We balanced the 
layout such that no side is overloaded, and the chassis 
height is kept moderate to reduce torque about the ground 
(less tipping). This configuration helps maintain traction, 
especially when ascending ramps. 

9.​ Safety, Thermal, and Robustness 

The motor driver and buck converter are mounted with 
thermal dissipation in mind.​
We included simple protective measures (e.g., fuses) to 
prevent damage from overcurrent or short circuits.​
Structural rigidity is verified so that under vibration or 
slight impacts, nothing loosens.​
We sealed or protected open components from dust and 
debris to maintain performance in field conditions.​
 

10.​ Design Tradeoffs & Alternatives Considered 

​
We considered using acrylic material for higher strength, 
but decided on PLA to allow rapid prototyping and weight 
savings. We also considered more powerful motors or 
higher current drivers, but these would increase cost, 
weight, and power consumption. In early tests, some 
heavier motor-driver combinations led to overheating; thus 
we settled on the current configuration which balances 
power and reliability. 

Schematic Diagram

 

Fig 9. Schematic Diagram showing connection of 
components 

Above is a schematic diagram demonstrating the low -level 
control via the Arduino Mega and all the sensors it is 
controlling. 
It demonstrates connection of one of the motors to the 
Arduino Mega. 

 

C.​ The software 
 
This chapter presents the design and implementation of the 
software architecture for an autonomous mobile robot 
system developed on ROS 2 Humble Hawksbill. The 
system adopts a modular architecture inspired by the 
workflow popularized by Articulated Robotics, 
emphasizing simulation-first validation and seamless 
transition to hardware deployment. The robot employs a 2D 
LiDAR sensor for environmental perception, enabling 
incremental map construction and real-time obstacle 
detection. Navigation is managed by the Nav2 stack, which 
provides global path planning, local trajectory following, 
and dynamic obstacle avoidance. 
System validation and parameter tuning were initially 
conducted in Gazebo simulation, where a URDF model was 
defined, controller interfaces were configured, and 
ros2_control parameters were verified prior to hardware 
integration. By following a staged methodology simulation, 
parameter optimization, and hardware deployment the 
development process minimizes integration risks, ensures 
consistency between virtual and physical environments, and 
allows rigorous testing of navigation modules.  
 

1.​ Software Architecture 
The software architecture is organized around a ROS 2 
node graph that separates sensing, planning, control, and 
actuation, with a bridging layer connecting ROS 2 to the 
Arduino microcontroller. YAML configuration files load the 
diff_drive_controller and joint_state_broadcaster, while the 
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gazebo_ros2_control plugin instantiates the controller 
manager and links simulated joints to ROS 2 controllers. 
LiDAR data is exposed to ROS 2 via Gazebo plugins, 
publishing LaserScan messages that feed directly into the 
navigation stack. The Nav2 framework subscribes to sensor 
topics and publishes velocity commands, which are relayed 
to the Arduino bridge. The bridge transmits these 
commands to the motor hardware and publishes odometry 
feedback back into ROS 2. The system is built on ROS 2 
Humble Hawksbill , chosen for its long-term support, 
compatibility with Ubuntu 22.04, and widespread adoption 
in both research and industry. ROS 2 provides modern 
features such as improved middleware, enhanced 
quality-of-service policies, and distributed system support, 
making it well suited for complex autonomous robotic 
systems.  
 
In the developed robot, the LiDAR node publishes /scan 
data, which is consumed by both the SLAM and Nav2 
nodes. Nav2 generates velocity commands (/cmd_vel), 
which are transmitted to the motor drivers via the 
ros_arduino_bridge. The Arduino firmware handles 
low-level motor control and sensor feedback, while the 
bridge publishes odometry back into ROS 2. During testing, 
teleoperation and the joint_state_publisher were employed 
to validate odometry and verify system behavior. This 
bridging strategy ensures that the same navigation and 
perception stack validated in simulation can be deployed to 
hardware with minimal modification. 
 
 
 

2.​ Software Implementation and Validation 
The robot was modeled using URDF/Xacro, which defined 
its geometry, joints, and sensors for both simulation and 
deployment. Python-based launch files were developed to 
configure Gazebo simulation, RViz visualization, and 
hardware execution. Controller parameters such as wheel 
separation and PID gains were stored in YAML files, while 
the ros_arduino_bridge was implemented in C++. 
Validation followed a simulation-first approach. In Gazebo 
and RViz, the accuracy of the model, transforms, sensor 
data publishing, and navigation performance were verified 
using Nav2 for mapping, planning, and obstacle avoidance. 
Once validated in simulation, the same codebase was 
deployed to the physical robot, where trajectory tracking, 
odometry accuracy, and navigation reliability were tested. 
Minor discrepancies, primarily caused by serial latency and 
parameter mismatches, were iteratively refined until the 
system achieved stable performance. 
 

 
 

Fig. 10. Diagram showing the URDF spawned in gazebo 
 

 
 
Fig. 11.  Diagram showing the robot navigating a gamefield 

in gazebo 
 

3.​ Results 
The results demonstrated low communication latency 
between ROS 2 nodes, the Arduino bridge, and the 
firmware. Navigation commands were executed with 
minimal delay, enabling smooth motion even during 
frequent updates from the local planner. Several iterations 
of parameter tuning were required to achieve consistent 
navigation accuracy. Adjusting the robot radius parameter 
was critical to ensure that Nav2’s planners respected the 
robot’s footprint, while tuning the wheel separation 
parameter aligned simulated kinematics with real-world 
behavior. 
After refinement, the robot achieved reliable path 
following, stable obstacle avoidance, and accurate 
odometry. In simulation, path tracking error remained 
within a small margin of truth, while hardware tests 
confirmed sufficient accuracy for SLAM and navigation in 
structured indoor environments.  
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Fig. 12.  Diagram showing the map generated during a 
practise run in gazebo 

 
4.​ Challenges and Solutions 

Several challenges were encountered during development. 
Early attempts to use WSL on Windows introduced high 
communication latency and frequent build errors, which 
were resolved by migrating to a native Ubuntu installation 
for full ROS 2 compatibility. Cross-compilation on the 
Raspberry Pi also posed difficulties, as many packages 
compiled successfully on x86 but failed on ARM64. This 
was addressed by excluding non-essential packages, 
allowing navigation and control components to compile 
successfully. 
Another challenge involved integrating the 
ros_arduino_bridge with the URDF and navigation stack, 
where mismatches between simulation and hardware 
behavior arose from synchronization issues. These were 
resolved through iterative parameter tuning, particularly of 
wheel separation and robot radius, and by leveraging  
knowledge sharing with peers. Through these solutions, the 
software stack was stabilized across both simulation and 
hardware platforms. 
 

5.​ Conclusions 
The development of the robot’s software architecture 
demonstrates the effectiveness of a simulation-first 
methodology combined with a modular ROS 2 framework. 
By validating the system in Gazebo prior to hardware 
deployment, integration risks were minimized, and 
discrepancies between simulated and real-world 
performance were addressed. The use of ROS 2 Humble, 
together with the Nav2 navigation stack and the 
ros_arduino_bridge, enabled a clean separation between 
high-level autonomy and low-level control, ensuring 
portability and reproducibility. 
The results confirm that careful parameter tuning, 
particularly of robot radius and wheel separation, is 
essential for achieving accurate navigation and odometry.  
 

 

D.​ Disease Detection Model using OpenCV 
Once we had the navigation done, we proceeded to 
experiment with training a simple disease detection model 
using frames of plant leaves. The model was written using 
python and various libraries like TensorFlow and NumPy 
for the training. We used a simple data set of about 10 
healthy plants and 10 diseased plants to train the model. On 
application the model was fairly accurate and was able to 
correctly classify a test image which was diseased.  

 
 

Fig. 13. Sample CV model to classify plant leaves as 
diseased or healthy 

 
We later obtained a pre-trained model that classified the 
frames of the potato leaves into healthy, early blight and 
late blight. We tested the model and integrated it with the Pi 
camera feed, which is talked about in the sections that 
follow. 
 

1.​ Camera Integration 
For the competition we were required to use the Raspberry 
Pi camera to run computer vision models for detecting 
disease in potato plants. The model was trained to detect 
whether the potato plant was healthy, had Early blight or 
Late blight based on frames taken of the leaves of the 
plant. The camera was also to be used for color detection 
which was to be integrated with the picking up and 
dropping of the cube mechanism. In summary the camera 
was required to detect the presence of the cube on our 
carriage mechanism as well as its color and match it with 
the color code of the dropping area. If the colors matched 
the camera would publish a boolean true which would 
initiate the actuation of the dropping mechanism. 
 

2.​ Camera Testing 
Once we connected the camera, we SSH’d into the Pi and 
checked that the camera was detected by running the 
command; ls /dev/video*. This command lists the available 
video devices, the first (index0) of which being the camera 
and the rest used to generate metadata for the photos and 
videos generated by the camera. We then run commands to 
take pictures which were saved on the Pi.  
 

3.​ Video Stream 
For the video stream we had two options; 
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●​ Using the built-in rQt GUI interface to see the 
video stream. 

●​ Using a webpage to access the video stream and 
include functionalities such as taking snapshots 
and recording video frames. 

 
Both options were feasible, however we decided to go with 
the second one, specifically using Flask to design a simple 
webpage that would run on a localhost port to access the 
video stream. This allowed us to access the stream from any 
device as well as to customize the page for functions we 
would need in the future. 
 

4.​ Potato Disease Detection Model 
Once the video stream was running, we linked the python 
video stream script with the ROS disease detection model 
by publishing streams to the /image node of the disease 
detection model. On clicking record stream, the stream 
starts publishing frames to the node which listens for frames 
that are then run through the model and the result streamed 
in logs on the raspberry pi ros workspace. The model 
detects whether the leaf is healthy, has early blight or late 
blight.  
 
 

5.​ Color and Object Detection  
We used a separate script for color detection of the frames. 
The script runs on Open CV and checks the pixels of the 
frame against a presaved set of colors using the HSV 
model. The following pictures show the model in action 
showing results for the colors; yellow, green and red. 
 

 
 

Fig. 14. Color detection model using the Raspberry Pi 
Camera 

 
We were also able to run a simple cube detection model 
which detects the presence of cube by analyzing sharp 
edges that contrast with the background as well as running 
the previous color detection model on the detected cube. 
This model will be improved and applied to detect once the 
cube has been placed on our carriage mechanism and the 
color of the cube to be able to compare it with the color 
code of the dropping area. The following pictures show the 
model in action. 
 

 
 

 
 

Fig. 15. Testing cube and color detection model using 
OpenCV 

 
 

6.​ Results from Camera and Computer Vision Model 
Tests and Planned Integration 

 
Potato Disease Detection Model 

The potato disease detection model had positive results on 
testing with the model being fairly accurate in detecting 
healthy potato leaves. For leaves with early blight that had 
few spots, the accuracy of the model was a bit low but for 
leaves with late blight or leaves with pronounced spots that 
are still in early blight, the model was able to classify them 
accurately. Further training of the model with a greater 
data-set is planned to improve the accuracy of the model.  
 

Color and Cube Detection Model 
The color detection model showed high accuracy especially 
since the range of colors was limited to the primary colors 
and colors like green, purple etc which are easily detectable 
especially if converted to the HSV format.  
 
The cube detection model was also fairly accurate with just 
a few instances where areas with noise in the frame were 
detected as cubes. We improved the model to ignore 
sections with small pixels that seem to be noise and focus 
on large sections having pixels that are similar in color. This 
greatly improved the accuracy of the model. In terms of 
detecting the color of the cube the model had exceptional 
accuracy. 
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Planned Integration 
With the individual potato-disease detection model and the 
object and color detection model working well, the next 
plan is integrating the systems with the SLAM and the 
dropping mechanism using the servo-motor and IR sensor 
 

E.​ Experimental setup  

We have tested and tried various aspects of the robot 
including the design of the body, the material for the robot 
body, the architecture of the dropping mechanism and use 
of a custom castor wheel. These are discussed below; 
 

1.​ The body 
Initially our robot design was circular, having two motor 
driven wheels along the diameter of the bottom platform 
and two custom designed rubber castor wheels. The motion 
of the design was mostly smooth however on testing the 
robot on a ramp we realized the robot couldn’t climb a 
ramp. 
 

 
 

Fig. 16. First CAD design of robot 
 
We decided to change our design from a circular one with 
the driven wheels along the diameter and pushed the driven 
wheels further behind. This enabled the wheels to keep in 
contact with the ground even while the robot was climbing 
the ramp.  
 
The following pictures show the new design and the 
redesign of the base to enable the robot to easily climb the 
ramp. We also added more holes on the base platform to 
improve our cable management. 
 

  
 

●​ Fig. 17. Redesigned robot base with wheels placed 
further from the center 

 

 
 

Fig. 18. New Robot Design 
 

 
2.​ Material Selection for the Robot 

 
For the material of the robot platforms we had two options; 

1.​ Using 3D printed PLA (Polylactic Acid) 
2.​ Using Acrylic cut using LASER cutting 
 

We experimented with Acrylic platforms and found that 
they were relatively strong and had great structural 
integrity. A downside we noticed was the pillars were their 
stability. Since the acrylic was just 5mm thin the pillars 
were relatively unstable compared to 3D printed pillars. We 
also realized 3D printed parts adhered better with each other 
when using hot glue as compared with acrylic. These 
considerations made us choose 3D printing instead of using 
acrylic. 

3.​ Custom Castor Wheel Design 
As part of the agricultural application of the robot project, 
the game plan of the robot has different terrains including 
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sawdust and grass. These different terrains require rubber 
tyres since they have enough friction to be able to navigate 
the terrain. This consideration led us to designing a custom 
castor wheel design that would use a rubber wheel. The 
castor wheel design was 3D printed having three parts, the 
castor wheel pin, the castor wheel holder and the wheel 
holder. A 6001 bearing was used to enable the smooth 
circular motion and the 3D printed parts were designed 
around it. 

.  

 
Fig. 19. 6001 ball bearing 

 

The following pictures show the castor wheel design, its 
assembly and the 3D printing process. 

 
 

 
 

Fig. 20. Castor Wheel Design 

 
Fig. 21. Castor wheel design slicing for 3D printing using 

Prusa Slicer 
 

F.​ Challenges faced  
●​ First time experience. Since this was our first time 

experience in the Robotics Dojo competition for 
our group, we had to learn most of the concepts 
from scratch which was a slight challenge. 
 

●​ Limited funds. We had to buy components within 
the budget we were allocated which forced us to 
design some components and also use 3D printed 
parts for the platforms as well rather than acrylic. 
 

●​ Limited time allocated. The allocated time of one 
month to complete the project proved to be quite a 
challenge especially with all the concepts that 
required to be integrated with the robot. 
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