
Robosync Technical Design Paper for the Robotics
Dojo Competition 2025

Shalom J Kiptanui, Bakita Nyamisa, Annette Oundo, Beverly Lasoi, Lennox Kinyua (ROBOSYNC)
Gareth Ruhiu Githiri

Abstract—This paper presents an autonomous ground robot
developed by Team Robosync for the Robotics Dojo Competition
2025. The system performs environmental mapping, navigation
on varied terrain, and object handling tasks using RP LiDAR for
SLAM, Raspberry Pi 4 for processing, and Arduino Mega for
motor control. The design emphasizes affordability and modu-
larity, with capabilities extended to agricultural applications like
plant disease detection. Experimental results demonstrate robust
integration of perception, navigation, and task execution in a
low-cost ROS 2 platform.

I. INTRODUCTION

Autonomous mobile robots are increasingly deployed in
environments demanding robust navigation, perception, and
task execution across diverse terrains. For the Robotics Dojo
Competition 2025, Team Robosync developed an autonomous
ground robot capable of mapping, navigation on uneven ter-
rain, and object manipulation. This system was purpose-built
to address specific competition challenges while demonstrating
potential for real-world agricultural applications.

The robot’s primary competition tasks included:
• Environmental mapping and navigation across mixed

terrains (sawdust, stones, grass)
• Identification and collection of colored cubes for

transport
• Precise delivery to designated drop-off locations
• Ramp traversal and navigation to final destinations
Beyond the competition scope, the platform was extended

for agricultural applications, particularly potato disease de-
tection using computer vision and farm material transport,
showcasing its versatility in practical scenarios.

The design philosophy emphasized affordability, robustness,
and modularity. The system integrates an RP LiDAR for
simultaneous localization and mapping (SLAM), a Raspberry
Pi 4 for high-level processing, and an Arduino Mega 2560
for low-level motor control. A Pi Camera enables color-based
object recognition, while a servo-actuated trapdoor mecha-
nism provides controlled object handling. Experimental results
demonstrate successful integration of mapping, navigation, and
task execution capabilities, highlighting the feasibility of low-
cost, ROS 2-based autonomous platforms for both competitive
robotics and applied field applications.

II. METHODOLOGY

A. Design Strategy

The design strategy employed a collaborative approach
integrating mechanical design, electrical systems, and software

development into a unified platform. The team prioritized
modularity, reliability, and terrain adaptability to ensure robust
performance across competition tasks and agricultural appli-
cations.

• Holistic System Architecture: The robot was designed
to address diverse challenges including uneven terrain
navigation, object identification, precise manipulation,
and agricultural monitoring. The system architecture
comprised three integrated domains:
– Mobile Platform: Focused on stability, terrain

adaptability, and object handling actuation
– Perception and Navigation: Enabled environmental

mapping, obstacle detection, and autonomous path
planning

– Task Execution Systems: Provided reliable object
handling and agricultural monitoring capabilities

• Mapping and Navigation: The navigation strategy
centered on real-time environmental awareness. Using
an RP LiDAR coupled with ROS 2-based SLAM
algorithms, the robot continuously updated its
surroundings in a 2D occupancy grid. This allowed it to
detect obstacles, plan collision-free paths, and make
quick directional decisions. The navigation system also
incorporated a camera for cube color recognition,
enabling the robot to identify and select the correct
target before initiating collection.

• Multi-Modal Perception: The perception system
served dual purposes: competition object recognition
and agricultural monitoring. Using the Pi Camera with
OpenCV and machine learning algorithms, the robot
could identify colored cubes for collection while
simultaneously detecting potato plant diseases during
navigation. This dual-mode operation demonstrated the
system’s flexibility in switching between competition
and agricultural tasks.

• Object Handling: A trapdoor mechanism was chosen
for its simplicity and reliability in offloading objects.
The pickup system was designed with guidance
channels and a small collection bay to minimize errors
when receiving cubes. Once secured, the cube remained
stable during movement until the drop-off location was
confirmed. The trap door then released the cube at the
appropriate station, minimizing mechanical complexity
compared to gripper-based systems.

• Reliability and Capability: The design favored proven,

Robosync Technical Design Paper 2

low-complexity components that offered dependable
performance under competition time constraints.
– Controller Choice: A Raspberry Pi 4 was selected for

its ability to handle ROS 2, SLAM, and computer
vision tasks without excessive computational
overhead.

– Motor Control: Encoders were used for closed-loop
control, ensuring accurate speed and position tracking
on varied terrain.

– Durability: The chassis was built with lightweight but
rigid materials, reducing power consumption while
maintaining structural integrity on rough surfaces.

• Terrain Adaptability: The platform was equipped with
high-torque DC motors and large-diameter wheels,
ensuring it could traverse sand, stones, sawdust, and
grass without stalling. A low center of gravity and
rectangular chassis design enhanced stability, especially
when navigating ramps or turning in tight spaces.

• Testing and Iterative Refinement: Development was
carried out in iterative cycles of simulation and physical
testing. ROS 2-based Gazebo simulations validated
mapping and navigation algorithms before deployment
on hardware. Field trials on competition-like surfaces
allowed the team to refine motor control parameters,
tune sensor placement, and improve reliability. This
test-driven strategy ensured that potential weaknesses
were identified early and corrected before final
integration.

B. Vehicle Design and Methodology

• Material and Component Selection: The components
were chosen based on compatibility, performance, and
budget constraints. The main parts are:
– RP LiDAR (12 m range) for mapping and obstacle

detection
– Raspberry Pi 4 Model B (4 GB) as the central

compute node
– Micro SD card (32 GB) for OS and storage
– Pi Camera for visual color detection
– Arduino Mega 2560 for low-level control of motors

and sensors
– Two DC encoder motors (with mounting brackets,

couplings, screws)
– Four off-road wheels
– L298N dual H-bridge motor driver
– Lithium-ion battery pack (multiple cells) for motor

power
– Two XL4015 5 A buck converters for regulated

voltage rails
– Acrylic sheets for the chassis, tiers, and structural

parts
– A 180° servo motor for controlling the trapdoor

offloading mechanism
Each component was matched to its functional role and
validated against expected loads, voltage, current, and

environmental constraints.
• Design Process:

1. CAD & Mechanical Layout: Using Autodesk Fusion
360, the team built the full layout of the robot’s
chassis, wheel mounts, motor brackets, servo housing
(for the trapdoor), and component placement (e.g.,
buck converters, LiDAR, Pi, Arduino). Attention was
given to center of gravity, structural rigidity, and
modularity for maintenance.

2. Electrical Schematic & Power Planning: A wiring
diagram was created connecting battery pack, buck
converters, motor drivers, motors, Pi, Arduino,
LiDAR, camera, and servo. Voltage rails were
assigned: one rail (via XL4015) for motors, another
for electronics. Current demands were estimated, and
wiring gauges chosen to minimize voltage drop.

3. Bill of Materials (BOM) & Procurement: A detailed
BOM was prepared, listing each component (type,
model, supplier, quantity, and unit cost). This BOM
was used to place orders, ensuring that all parts
match design specifications.

4. Fabrication of Structure: The base and tier plates
were laser cut from acrylic sheets according to the
CAD outlines. Additional custom parts were 3D
printed to interface components like mounts, trap
door, sensor enclosures, camera and LiDAR mounts.

5. Assembly of Mechanics & Electronics: Chassis,
motors, wheel couplings, motor brackets, and supports
were mounted. The servo-operated trapdoor was fixed
to the chassis in a position that allowed clear
opening/closing. The LiDAR sensor, Pi, Arduino,
camera, buck converters, and wiring were integrated
into the structure in a clean and organized manner.

6. Initial Motor Tests & Alignment: Using test routines
on the Arduino, each motor was run at low speeds to
ensure correct rotation direction and verify encoder
feedback. Wheel alignment and weight balancing
were verified. Adjustments were made for coupler
alignment and mechanical tolerances.

7. Motor Control Software & Integration: Using
VSCode and Arduino IDE, control code was written
that interfaces ROS 2 commands (over serial) to
motor PWM and encoder reading. Calibration
routines were implemented to map PWM inputs to
observed speeds (RPM) using encoder feedback.

8. Navigation & System Integration: Once the base
platform was validated, the navigation stack (ROS 2
packages, LiDAR integration, mapping, localization,
planning) was integrated. The system was tested in
simulation, then gradually on the physical robot,
adjusting parameters to ensure the motion commands
matched real-world behavior.

9. Final Tuning & Adjustments: All mounts, wiring, and
component placements were verified for mechanical
stress, interference, and safety. Adjustments were

Robosync Technical Design Paper 3

made to reduce vibrations, electrical noise, or
mechanical play.

10. Field & Competition Testing: The robot was tested in
representative terrain conditions: sand, sawdust, grass,
stone, and ramp surfaces. Mapping, navigation, cube
detection and collection, and drop-off operations were
exercised repeatedly, and performance metrics
recorded. Final adjustments and improvements were
applied to the navigation system.

Fig. 1. Assembled Robosync robot after full integration.

C. Chassis and Structural Components

• The chassis and structural components were fabricated
from acrylic sheets, chosen for the following reasons:
– Lightweight properties: Acrylic is lighter than

materials like steel or aluminum. This reduction in
overall mass lowers motor torque demand, thereby
increasing energy efficiency and extending battery
life.

– Ease of machining: Acrylic is easy to drill, cut, shape
and is flexible.

– Cost-effectiveness: Acrylic is inexpensive compared
to other structural materials.

– Electrical insulation: Acrylic reduces the risk of short
circuits when mounting electronic boards and wiring.

– Non-Conductive: Being a poor conductor prevents
electrical shorts or interference with electronic
components.

For custom parts such as motor brackets, chassis
mounts, trap door mechanism, and sensor (camera and
LiDAR) mounts, 3D printing with PLA filament was
employed. PLA was selected because of its ease of use,
dimensional accuracy, and adequate strength for
lightweight robotic structures.

D. Processing Unit – Raspberry Pi 4

• The Raspberry Pi 4 served as the robot’s central
computing platform. Its quad-core ARM Cortex-A72
processor and up to 4 GB RAM provided sufficient
capability for running ROS 2 (Robot Operating System
2), which handles sensor fusion, navigation, and control.

• Key reasons for its selection:

Fig. 2. Laser-cut acrylic chassis used for the robot.

– Computational balance: Powerful enough for LiDAR
processing and SLAM, yet less power-hungry than
laptops or NVIDIA Jetson boards.

– Connectivity: Includes multiple USB ports for
LiDAR, Arduino and camera, and GPIO pins for
hardware interfacing.

– Community support: Extensive documentation and
libraries simplified software development and
troubleshooting.

The Pi was powered by a dedicated 5V power bank,
ensuring a clean and stable supply to avoid brownouts
during high-load computation.

Fig. 3. Raspberry Pi 4 used as the main processing unit.

E. Mechanical Design (CAD & Fabrication)

• Design Tools: Autodesk Fusion 360 was used to design
the chassis and custom components in 3D. CAD allowed
precise dimensioning to match the purchased hardware.

• Chassis Layout: A rectangular, multi-tier chassis was
selected for this build. The rectangular profile provides
structural simplicity, easier fabrication using laser-cut
acrylic sheets, and efficient space utilization for
mounting electronic and mechanical components. The
flat edges also simplify attachment of brackets,
couplers, and side panels compared to a circular base.

• Multi-tier Layout:
– Bottom layer houses the drivetrain (DC geared

motors, wheels, buck converters, motor drivers and
the circuitry system) to keep the center of gravity low.

– Middle layer accommodates the power system and
processing unit (batteries, Raspberry Pi).

– Top layer supports sensors (LiDAR, camera),
ensuring minimal vibration interference and clear
sensor field of view.

By vertically separating mechanical, electrical, and
sensing modules, the multi-tier approach improves

Robosync Technical Design Paper 4

accessibility during maintenance, reduces wiring
congestion, and enhances airflow for passive cooling.

• Fabrication:
– Laser cutting was used for acrylic sheets, enabling

precision and consistency in chassis fabrication.
– 3D printing created sensor holders (camera and

LiDAR mounts), trap door, and couplers, offering
flexibility for iterative improvements.

Fig. 4. Full body CAD layout of the Robosync robot.

F. Electrical System Design

The electrical subsystem was designed around voltage
compatibility and load separation.

• High-power rail (12V Li-ion battery pack):
Cylindrical lithium-ion cells were chosen for the motor
battery pack over other options like LiPo for several
practical reasons:
– Cost-Effectiveness: More affordable than equivalent

LiPo batteries.
– Weight: Lighter, which helps with the robot’s overall

agility and power consumption.
– Safety and Simplicity: Lithium-Ion cells are generally

more robust and require less intensive monitoring
compared to LiPo batteries, which are more sensitive
to improper charging or discharging.

• Low-power rail (5V USB power bank): Powered the
Raspberry Pi, LiDAR, and Arduino. Specifications:
– Capacity: 10000mAh providing long operation time.
– Output: Each output port (USB-A and Type-C)

delivers a maximum of 5V/3A. Since the Raspberry
Pi operates safely within this 5V/3A limit, the
powerbank is a perfect and safe match.

Note: During initial testing, a wiring error allowed
simultaneous power from both Arduino and external
source, damaging one Raspberry Pi. This was corrected
with proper isolation in the final design.

• Buck converters (XL4015): Used to step down voltages
where required, preventing over-voltage damage.

• Circuit Protection: Switches and fuses were added to
isolate sections during testing and prevent short circuits.
The wiring layout was carefully planned to minimize
electromagnetic interference (EMI) from motor

switching, with motor driver wiring physically separated
from sensor and processor cabling.

Fig. 5. Lithium-ion battery pack powering the drivetrain.

Fig. 6. Dedicated power bank for Raspberry Pi and sensors.

Fig. 7. Buck converter used to regulate voltage levels.

G. Motor Selection and Control

• The drivetrain used 12V DC geared motors with
encoders (rated speed 110 RPM). These were selected
based on:
– Torque requirements: Sufficient torque to move the

robot and payload across different surfaces. Torque
depends on the current drawn and is directly related
to the mechanical load – the weight of the robot,
friction, and any inclines. The motor selected

Robosync Technical Design Paper 5

provided a torque of 10Kgcm which was suitable for
the game field terrain.

– Encoder feedback: Essential for odometry and
closed-loop speed control. Motors with built-in
encoders provide real-time feedback on speed and
position. This enables closed-loop control, allowing
the robot to accurately maintain its speed even when
going up a ramp or carrying a load.

– Compatibility with L298N driver: The motor and its
driver (an L298N in our case) require a stable power
supply. The voltage drop across the motor driver was
accounted for, which means the motor receives
slightly less voltage than the battery supplies. Motors
operate safely within the driver’s 2A/channel
continuous rating.

H. Motor Selection and Control

– The drivetrain used 12V DC geared motors with
encoders (rated speed 110 RPM).

– Control Strategy Implementation: The Arduino
Mega acted as a low-level controller, receiving
velocity commands from the Raspberry Pi.
∗ Control Approach: We implemented closed-loop

control using PID algorithms based on encoder
feedback. This provided good speed regulation at
lower RPMs (100 RPM).

∗ Performance Notes: At higher speeds (200
RPM+), some odometry drift occurred despite
closed-loop control. This was mitigated through
calibration routines and by relying more heavily
on LiDAR for positional correction during
navigation tasks.

∗ Communication: UART serial protocol provided
reliable communication between Pi and Arduino.

Formula:

Speed (RPM) =
Encoder Counts

Pulses per Revolution
× Gear Ratio

Fig. 8. DC encoder motor used for closed-loop speed control.

I. Motor Driver – L298N

• The L298N dual H-bridge driver was employed to
interface the Arduino’s low-power PWM signals with
the motors’ higher current demands. Despite newer,

more efficient drivers existing, the L298N was chosen
because:
– It is widely available and budget-friendly.
– It provides both direction and speed control.
– It includes onboard heat sinks for thermal protection.
Limitations such as voltage drop (1.5V across
transistors) were accounted for in the design, ensuring
the motors still received sufficient effective voltage for
operation.

Fig. 9. L298N motor driver for DC motor control.

J. Navigation and Sensing – RP LiDAR

• The RP LiDAR was integrated as the primary sensor for
mapping and navigation. Its 360° scan and real-time
point cloud generation made it suitable for
implementing Simultaneous Localization and Mapping
(SLAM) in ROS 2.

• Reasons for Selection:
– High accuracy at a competitive price – RP LiDAR

provides accurate 360-degree scanning of the
environment, giving the robot a detailed map of its
surroundings.

– Lightweight and compact, minimizing mechanical
load and allowing faster, more agile movement.

– Provides consistent data suitable for obstacle
detection and path planning.

• Mapping Applications:
– Situational Awareness: Enabled the robot to detect

obstacles, open paths, and environmental boundaries
with high accuracy.

– Autonomous Navigation: Provided real-time spatial
updates that allowed the navigation stack to plan
routes and execute obstacle avoidance.

– Operational Optimization: Detailed mapping
supported precise path-following and improved
efficiency in task execution.

• LiDAR data was fused with wheel encoder odometry to
improve localization accuracy and reduce drift.

K. Cube Collection & Offloading (Servo Mechanism)

• A 180° servo motor was used for the cube handling
(trap door) mechanism. Unlike continuous rotation
servos, the 180° version provides precise angular
positioning, ideal for opening/closing the trapdoor to
release collected cubes.

Robosync Technical Design Paper 6

Fig. 10. RP LiDAR used for 360-degree environment scanning and SLAM.

• Advantages of this approach:
– Mechanical simplicity – no need for complex

linkages.
– Energy efficiency – servo only consumes power

during actuation.
– Reliability – fixed travel limits reduce the risk of

over-rotation damage.

Fig. 11. Servo motor operating the trapdoor mechanism.

L. Couplers

• Couplers were used to connect the motor shafts to the
off-road drive wheels, ensuring efficient and reliable
drivetrain performance.

• Functions:
– Torque Transfer: Enabled direct transmission of

motor torque to the wheels with minimal energy loss.
– Alignment Tolerance: Absorbed small misalignments

between the motor shafts and wheel hubs, preventing
mechanical stress.

– Vibration Dampening: Reduced vibrations and shocks
from terrain irregularities, protecting both motors and
wheel assemblies.

– Flexibility in Assembly: Allowed compatibility
between components with slightly different shaft
dimensions, simplifying installation.

M. Motor Brackets

• Motor brackets were used to mount the drive motors
firmly to the acrylic chassis, ensuring stability and
alignment.

• Benefits:

– Rigid Mounting: Prevented displacement of motors
during acceleration, braking, or uneven terrain
traversal.

– Accurate Coupling: Maintained precise alignment
between motor shafts, couplers, and wheels, ensuring
smooth drivetrain performance.

– Vibration Control: Limited oscillations transmitted
from the motors to the chassis, reducing wear on
components.

– Flexible Placement: Supported optimized positioning
of motors for proper weight distribution and chassis
balance.

Fig. 12. Motor brackets mounted on the acrylic chassis.

N. Wheels

• The mobility system evolved through testing to a final
two-wheel drive configuration:
– Drive Wheels (Front): Large off-road wheels powered

by DC geared motors provided traction across varied
terrain.

– Support System Evolution: Initial designs used caster
wheels for rear support, but these failed during
turning maneuvers due to excessive friction. The final
design uses two simple free-rolling wheels mounted
on a fixed support rod, providing better stability and
directional control.

• Advantages of Final Design:
– Terrain Adaptability: Off-road tread pattern ensured

reliable operation.
– Stability: The simplified rear support distributed load

evenly while reducing mechanical complexity.

O. Integration of Subsystems

• Integration followed a layered assembly approach:
1. Mechanical assembly – wheels, motors, chassis, free

rolling wheels, brackets, and couplers were mounted.
2. Electrical installation – wiring of motors, Li-ion

battery, power bank, buck converters, and motor
driver.

3. Electronics placement – Raspberry Pi, Arduino,
LiDAR, and camera were installed on dedicated tiers.

4. System integration – ROS 2 nodes linked motor
control (Arduino) with navigation (LiDAR + Pi).

Robosync Technical Design Paper 7

Fig. 13. Off-road wheels providing terrain adaptability.

P. Testing Framework

• Testing was iterative and multi-level:
– Motor Testing (Arduino only): Verified wheel

alignment, encoder feedback, and motor response at
different PWM values.

– Subsystem Testing: Power rails tested under varying
load; LiDAR mapping tested in ROS 2 with Rviz.

– Integration Testing: Mobile platform combined with
navigation system in simulation and real-world trials.

– Game Field Testing: Full robot tested in
competition-like scenarios for obstacle avoidance,
cube collection, and path planning.

III. NAVIGATION

A. Introduction

• The navigation system forms the backbone of the
robot’s autonomy, enabling it to perceive its
surroundings, construct internal maps, and move
purposefully from one location to another.

• Implemented within the ROS 2 framework, the
navigation stack integrates multiple specialized
packages that collectively handle perception,
localization, planning, and motion control.

• The objective is to ensure that the robot can not only
operate in a simulated environment but also transfer
those capabilities seamlessly to real-world field
conditions.

• By leveraging ROS 2, the system benefits from
modularity, scalability, and robust middleware support.

B. Navigation Packages Overview

• To achieve reliable navigation, several key ROS 2
packages and tools were incorporated into the stack,
each fulfilling a specific role:
– Slidar: Provides integration for the 2D LiDAR

sensor. Supplies high-frequency distance
measurements used for mapping, obstacle detection,
and localization. Its 360° scan ensures comprehensive
awareness of the robot’s environment.

– Serial: Establishes a communication link (USB or
UART) between the Raspberry Pi and the Arduino.
Velocity commands are transmitted from ROS 2
nodes on the Pi to the Arduino, while encoder
feedback flows back for accurate odometry.

– Differential Drive Arduino: Interfaces with a
differential drive robot. Translates velocity commands
into motor actuation signals and processes encoder
data for odometry.

– Rviz: A visualization tool that displays maps,
trajectories, sensor readings, and robot states in real
time. Essential for debugging and validating outputs
during simulation and live runs.

– Gazebo: A simulation environment used to test the
robot virtually, modeling both sensors (LiDAR,
camera) and actuators (motors).

– Colcon: Build and workspace management tool for
compiling and linking navigation stack packages.

– Teleop twist: Provides manual robot control via
keyboard or joystick. Publishes velocity commands to
the /cmd_vel topic.

– Nav2 (Navigation2): Central navigation framework
in ROS 2. Integrates mapping, localization, global
and local path planning, control, and recovery
behaviors. Uses algorithms such as A* and Dijkstra’s.

– Slam Toolbox: Provides Simultaneous Localization
and Mapping (SLAM) capabilities, generating maps
of unknown environments while estimating robot
position.

– ROS2 Control: Manages hardware interfaces for
motors and sensors, bridging ROS 2-level commands
with low-level actuation.

– Twist mux: Multiplexer for velocity command
sources. Arbitrates between teleoperation inputs and
autonomous navigation commands.

C. Robot Navigation Architecture

• The ROS 2 navigation stack enables autonomous
navigation by integrating perception, planning, and
control components.

• Navigation process phases:
1. Perception: RPlidar collects raw distance data,

processed into point clouds and occupancy grid maps.
2. Localization: SLAM Toolbox aligns incoming

LiDAR scans with the evolving map, estimating robot
position. Adaptive Monte Carlo Localization (AMCL)
may refine positioning with pre-built maps.

3. Path Planning: Nav2 generates a path to the goal
location. Global planners (A* or Dijkstra’s) create
routes, while local planners adjust dynamically for
obstacles.

4. Control: Velocity commands from Nav2 are
transmitted via Twist mux and diff drive Arduino
packages. Arduino drives the motors with
encoder-based closed-loop control.

Robosync Technical Design Paper 8

5. Recovery: If the robot becomes stuck, Nav2 initiates
routines such as backing up, rotating, or recalculating
paths.

D. Simulation and Testing

• Rigorous testing was conducted in the Gazebo
simulation environment before hardware deployment.

• Focus Areas:
– LiDAR Accuracy: Verified distance measurements

against known obstacle placements.
– Path Planning Efficiency: Evaluated Nav2 route

computation in dense environments and waypoint
transitions.

– Localization Stability: Monitored position accuracy
under simulated odometry drift.

– Obstacle Avoidance: Observed robot detection and
response to moving/static obstacles in real time.

• Outputs were visualized in Rviz to inspect sensor data,
map evolution, and navigation decisions.

Fig. 14. Robot model running in Gazebo simulation environment.

Fig. 15. RP Lidar visualized in Gazebo during navigation testing.

E. Testing Framework

• The robot’s performance was evaluated in three stages:
a) Component-Level Validation

– Drive Motors: Operated across 80–150 RPM.
Encoder feedback monitored for distance
precision; calibration adjustments applied for
high-speed discrepancies.

– Motor Driver (L298N): Tested under continuous
load. Heat dissipation monitored; cooling intervals
scheduled to prevent overheating.

– RP LiDAR Sensor: Validated mapping accuracy
against measured distances; resolved small
obstacles critical for navigation.

– Power System: Evaluated under varying loads for
voltage stability. No brownouts observed during
extended operation.

b) System-Level Integration
– Closed-loop motor control achieved using encoder

feedback. Precise low-speed maneuvers;
High-speed drift corrected with compensation
algorithms.

– LiDAR data integrated with encoder odometry for
synchronized map updates.

– Power distribution stable during combined motor,
Pi, and sensor operations.

c) Simulation-Based Validation
– Tested in Gazebo with ramps, uneven terrain, and

random obstacles.
– Verified SLAM maps in Rviz matched simulated

environments.
– Nav2 path updates demonstrated responsiveness to

dynamic changes.

IV. AGRICULTURAL APPLICATION SOFTWARE

A. Disease Detection System

• The Robosync platform was extended for agricultural
applications, specifically targeting early detection of
plant diseases in field conditions.

• Computer Vision Pipeline:
– Camera System: Utilized the Pi Camera with custom

optics for close-range plant imaging
– Image Processing: Implemented OpenCV-based

algorithms for leaf segmentation and feature
extraction

– Disease Classification: Trained machine learning
models to identify common potato diseases including
early blight, late blight, and bacterial wilt

– Real-time Analysis: Processing pipeline capable of
analyzing 2-3 plants per minute during field
operations

• Software Architecture:
– ROS 2 Nodes: Separate nodes for image acquisition,

processing, and disease classification
– RQT Visualization: Used RQT tools for real-time

monitoring of camera feed, detection results, and
system diagnostics

– Data Logging: Automatic recording of GPS
coordinates, disease detection results, and confidence
scores

B. Agricultural Task Execution

• Field Navigation: Adapted navigation stack for
agricultural environments:

Robosync Technical Design Paper 9

Fig. 16. Healthy potato leaf detection with confidence score of 94%

Fig. 17. Successful disease detection showing early blight symptoms

– Row-following algorithms for systematic field
coverage

– Obstacle avoidance for irregular farm terrain
– Waypoint navigation between inspection zones

• Material Transport: Leveraged object handling
capabilities for farm tasks:
– Seed packet delivery to planting stations
– Soil sample collection and transport
– Tool carrying between farm locations
– Harvest sample transportation

• Detection Workflow:
1) Autonomous navigation to target plants using LiDAR

and camera fusion
2) Image capture and pre-processing for quality

enhancement
3) Feature extraction and disease classification (as

shown in Fig. 16 and Fig. 17)
4) Results logging with GPS coordinates for farmer

alerts
5) Continuation to next inspection point or transport task

C. Software Integration and Results

• RQT Implementation:
– RQT Graph: Monitored node connections and

message flow between detection modules
– RQT Plot: Visualized detection confidence metrics

and sensor data trends

– RQT Image View: Real-time camera feed with
overlay of detection results

– Custom Plugins: Developed specialized displays for
agricultural parameters

• Detection Performance:
– Achieved 92% accuracy in distinguishing healthy vs.

diseased leaves
– Successfully identified early blight with 85%

confidence in field conditions
– Real-time processing at 2-3 seconds per plant analysis
– Robust performance across varying lighting

conditions
• Field Validation:

– Testing conducted on actual potato plants in
controlled agricultural settings

– System demonstrated reliable detection capabilities as
shown in Fig. 17

– Healthy plant identification achieved high confidence
scores (Fig. 16)

– Integrated successfully with existing navigation and
object transport systems

D. Cube Collection System

• Approach and Collection: The robot uses a multi-stage
process for cube handling:

1) Identification: Pi Camera detects cube color from
approximately 0.5m distance

2) Alignment: Robot maneuvers to align with cube using
visual feedback and precise motor control

3) Collection: Forward movement guides cube into
collection bay via tapered guides

4) Verification: Successful collection confirmed through
positional checks

• Offloading Mechanism: The trapdoor system provides
reliable release at designated drop-off locations, with
servo-controlled operation ensuring consistent
performance.

V. RESULTS AND OUTCOMES

• Following the staged testing approach, the robot’s
performance was evaluated across multiple dimensions:

1. Motor Performance:
– At controlled speeds (80 RPM), encoder readings

were consistent, enabling accurate distance
tracking and reliable maneuvering.

– At higher speeds (110 RPM+), discrepancies
introduced odometry drift. These were addressed
through encoder calibration routines and refined
speed control algorithms.

– In long-distance tests, motors occasionally
required restart sequences to resynchronize
encoder feedback. This was corrected via
improved software handling.

2. Power System:

Robosync Technical Design Paper 10

– The dual power arrangement (Li-ion battery pack
+ auxiliary power bank) delivered stable voltage
under varying load conditions.

– No significant drops were observed during
high-current operations involving simultaneous
motor drive and sensor processing.

– Stability allowed uninterrupted execution of ROS
2 tasks, including mapping and path planning.

– However, one Raspberry Pi 4 was permanently
damaged when it was mistakenly powered
simultaneously from the Arduino and an external
power source, highlighting the importance of
strict power isolation.

3. Mapping and Navigation:
– RP LiDAR consistently generated dense and

accurate maps in both simulation and physical
trials.

– SLAM integration enabled localization and
navigation with minimal error.

– Real-world tests showed effective obstacle
detection and avoidance, route replanning, and
stable traversal across sand, sawdust, stones, and
grass.

– Successfully generated accurate 2D maps of test
environments (5m × 5m areas)

– Demonstrated reliable obstacle avoidance in
controlled tests

– Completed navigation sequences with 85%
success rate in final testing

4. Agricultural Application Performance:
– Achieved 92% accuracy in distinguishing healthy

vs. diseased potato plants
– Successfully detected early blight symptoms with

85% confidence in field conditions
– Maintained navigation capabilities while

performing real-time plant analysis
– Demonstrated seamless switching between

competition tasks and agricultural monitoring
5. System Robustness:

– The acrylic chassis and motor mounting brackets
provided rigidity and resistance to vibrations.

– LiDAR and encoders were unaffected by
vibrations or shocks during ramp climbing and
offloading tasks.

– No structural deformation was observed.
– Custom caster wheels were initially fabricated but

failed during turning maneuvers due to excessive
friction, leading to their replacement with a
simpler rear support system.

6. Reliability Insights:
– Power system provided stable operation for 45+

minutes per charge
– Mechanical components withstood repeated

testing cycles

– Encoder-based odometry provided sufficient
accuracy when supplemented with LiDAR
correction

VI. CHALLENGES

• Sensor Reliability:
– LiDAR readings were occasionally distorted by

reflective or irregular surfaces.
– Noise was reduced through filtering techniques and

averaging methods.
• Odometry Drift:

– Cumulative errors in wheel-based odometry persisted
despite calibration.

– Highlighted importance of LiDAR + odometry data
fusion for accurate localization.

• Real-Time Performance and Software Complexity:
– Running SLAM, navigation, and sensor processing

concurrently on the Raspberry Pi 4 required careful
resource management.

– Optimization was done by tuning update frequencies
and prioritizing time-critical tasks.

– Developing the URDF model and integrating
teleoperation (teleop) took significantly longer than
expected, particularly handling real-time image
streaming during teleop.

• Terrain Adaptability:
– Uneven surfaces (e.g., loose sand, sawdust)

introduced wheel slip, reducing traction and affecting
odometry.

– Future iterations may require enhanced wheel design
or adaptive traction control.

VII. CONCLUSION

• This project successfully demonstrated a mobile robotic
platform capable of:
– Autonomous navigation, mapping, and object

handling using ROS 2
– Potato plant disease detection with computer vision

and machine learning
– Dual-mode operation for both competition and

agricultural applications
– Real-time monitoring and data collection in field

conditions
• Challenges such as odometry drift, LiDAR noise,

encoder inaccuracies at high speed, power isolation
issues, and caster wheel design failures highlighted
areas for refinement.

• Future work will focus on:
– Improving localization robustness
– Enhancing terrain adaptability
– Optimizing control algorithms for smoother

real-world performance
– Designing a safer, more reliable power distribution

system

Robosync Technical Design Paper 11

• Overall, results validated the effectiveness of combining
ROS 2 navigation packages with cost-effective hardware
to build a reliable and adaptable robotic solution.

ACKNOWLEDGEMENTS

• Robosync acknowledges the support from other teams,
students, and staff for their assistance through training,
guidance, problem solving, and support throughout the
process.

REFERENCES

[1] Raspberry Pi (Trading) Ltd., “Raspberry Pi 4 Model B Release 1.1,”
Datasheet, March 2024. [Online]. Available:
https://www.raspberrypi.com

[2] Articulated Robotics, “Building a Mobile Robot,” YouTube Playlist.
[Online]. Available: https://youtube.com/playlist?list=
PLunhqkrRNRhYAffV8JDiFOatQXuU-NnxT

[3] Team Robosync, “Robosync Dojo GitHub Organization,” [Online].
Available: https://github.com/robosync2025/Dojo

[4] Robotics Dojo, “Robotics Dojo GitHub,” [Online]. Available:
https://roboticsdojo.github.io/

[5] Robotics Dojo, “Robotics Dojo Substack,” [Online]. Available:
https://roboticsdojo.substack.com/

[6] J. Newans, “Articubot One Repository,” [Online]. Available:
https://github.com/joshnewans/articubot one

APPENDIX

• This appendix addresses situational awareness and
operational concerns relevant to the unmanned systems
community.

• A significant challenge to adoption of unmanned
systems is user trust. Human operators need to
understand what the system is doing and why, and they
must be confident that the system is behaving as
intended.

• For this project, situational awareness could be
enhanced by:
– Providing visual feedback via Rviz for live mapping

and navigation.
– Exposing decision-making data such as selected

paths, obstacles detected, and navigation goals in real
time.

– Implementing user-friendly dashboards that
communicate system state (battery, localization status,
motor health).

• This approach fosters user trust, especially as emergent
behaviors (e.g., dynamic obstacle avoidance, adaptive
navigation) become more common in field robots.

• Teams are encouraged to share methods like these to
strengthen and enhance the Robotics Dojo community.

