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A. Design Strategy  

The design strategy for the Limit Breakers project 

involved a collaborative effort among the team members 

This team brought together expertise in both electrical design 

and software development to address the competition 

challenges efficiently. 

 
General Approach to Competition Challenges: 

 
1. Modular Design and Specialisation: The team's 

approach was based on dividing the robot’s development 

into two core areas: the mobile platform and the navigation 

system. This modular strategy allowed for focused work on 

each aspect, ensuring that the platform provided robust 

mechanical support, while the navigation system was 

optimised for real-time mapping and decision-making. This 

clear division of tasks enhanced both development speed and 

reliability. 

 

2. Mapping and Navigation: Focusing on real-time 

obstacle detection and autonomous movement, the robot was 

designed to make quick and accurate decisions during the 

competition. The RP Lidar provided 360-degree scanning, 

ensuring that the robot could understand its environment and 

navigate effectively without human intervention. 

 

3. Testing and Optimization: The team allocated 

significant time to testing and refining the mobile platform 

and navigation. The navigation algorithms were tested using 

ROS2 simulations (Rviz and Gazebo) and real game field 

trials, ensuring the system’s capability and reliability in 

dynamic environments.  
 

 

4. Reliability vs. Complexity 
 

- Reliability Over Complexity: The team opted for 

reliable, proven technologies that ensured system stability. 

For instance, while more advanced sensors or processors like 

the NVIDIA Jetson could increase capability, they would 

introduce complexity and potential failure points. The 

decision to use the Raspberry Pi 4 balances computational 

power with reliability, as it can handle tasks like running 

ROS2 without overwhelming the system. 

 

- Motor Control Simplicity: The mobile platform 

employed closed-loop control using motor encoders for 

precise movement. This allowed the robot to maintain 

accurate speed and position control without introducing the  

 

 

 

 

complexities of open-loop systems. The use of an L298N 

motor driver ensured adequate power delivery without 

unnecessary complications. 

 
5. Capability vs. Robustness 

 
- Capability in Navigation: The navigation team focused on 

enhancing the robot’s mapping capability, using RP Lidar to 

create detailed and real-time maps of the environment. This 

capability allowed the robot to navigate complex game field 

paths and avoid obstacles autonomously. The team maintained 

a robust system by avoiding unnecessary features that could 

compromise stability. 

 

- Robust Mobile Platform: The team emphasised the 

durability and stability of the mobile platform. The chassis 

was made from lightweight acrylic, ensuring the robot was 

both stable and energy-efficient. A round chassis design was 

used to improve manoeuvrability, allowing the robot to rotate 

easily in tight spaces, further enhancing its navigation 

performance. 

 
6. Testing for Reliability 

 
Given the limited preparation time, the team dedicated 

resources to testing and improving the reliability of the existing 

systems. The team ensured that the robot can operate 

consistently under competition conditions by continuously 

testing the integration of the mobile platform and navigation 

systems in both simulations and real-world environments. This 

approach minimised the risk of failure, as potential 
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issues were identified and addressed early in the 

development process. 
 
B. Vehicle Design 

1. Design process 

 
CAD design (Mechanical design) – Autodesk Inventor was 
used to design the parts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 CAD Design Assembly 

 

Electrical circuit design was done. 

 

Budget preparation – bill of materials required 
was prepared and forwarded for purchase. 

 

Purchase of components – components were purchased and 
distributed. 

 

Mechanical components fabrication - laser cutting of 
the acrylic, the parts were glued together, 

 

Electrical components circuit design – electrical circuit 

connection was done (motors, motor driver, Arduino, 

Raspberry Pi, Lithium-Ion batteries, power bank) 

 

Integration of mechanical and electrical components - 

wheels, motors, couplers, motor brackets, batteries, Arduino 

and chassis (temporary robot assembly) was done 

 

Move the robot using the microcontroller (first testing) – 

the robot was first moved to test wheel alignment, motors 
condition and overall assembly. 

 

Navigation development - The navigation stack was 

implemented on a robotic system using ROS2. The 

navigation setup integrated multiple software packages, 

allowing the robot to autonomously move and explore its 

environment. The primary goal of the navigation system was 

to enable the robot to map, localize, and navigate in a 

simulated or real-world environment using ROS2. 

 

Integration of mobile platform and navigation – lidar 
addition, map creation (mobile platform and navigation 
team working together). 
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Final assembly - permanent robot assembly 

 

Testing - game field testing, mapping and navigation 

 

Finalising - final fixes and perfecting the navigation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Final Robot assembly (tested) 

 

2. Methodology and design result 

 

Design considerations - During the design, several 

considerations were applied to ensure that the right 
components were chosen for the robot. Each part used 
is discussed below: 

 

Raspberry Pi  
Raspberry Pi is the brain for the robot. The following are 
key considerations for choosing a computer for this kind of 

project:  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 Raspberry Pi 

 

 

Why Raspberry Pi: The Raspberry Pi 4 was the recommended 

option due to its ubiquity, relatively low cost, and strong 

community support. While simpler robots might run on a 

smaller chip like an Arduino, the Pi is powerful enough to 

handle more complex software, such as ROS (Robot Operating 

System), which requires more computing 
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power. ROS2 was used in this project and it required 
a powerful chip like Raspberry Pi. 

 

Power: The Raspberry Pi can be powered by a 5V source, 

making it convenient for robotic applications. For other 
options like laptops or the Intel NUC, larger batteries 

may be required. 

 

Alternatives: Single-board computers like the NVIDIA 

Jetson, which could be better for GPU-heavy tasks like 

machine learning. A laptop or an Intel NUC can also be 

considered for more demanding projects, but these options 

could be more complex due to power and size constraints. 

 

Power Considerations  
Devices are rated for the maximum power they can 

draw, and components must work within these limits to 
avoid overheating or damage.  
Power sources used are Power bank (for 
microcontroller) and LiPo (for motors).  
The following are the key concepts and considerations 
for powering the robot: 
 

1. Voltage Considerations  
Operating voltage - It was essential to consider 
the operating voltage of each device.  
5 volts: For microcontrollers (Raspberry Pi and Arduino) 
and USB devices. Power bank used since it outputs a 

stable 5V.  
12 volts: For the DC motors, which required higher power.  
LiPo was used. 

 

2. Current Considerations  
Current Draw - It was essential to estimate the total current 
draw of all the components in the robot to choose the right 
power supply and regulators.  
For example, Raspberry Pi and lidar draw up to 5 amps. 

Motor Current: Motors draw different amounts of current 

based on load and torque. The stall current is the maximum 

current drawn when the motor is under maximum load, and it 

is crucial to ensure the motor driver can handle it. 

 

3. Battery Choice  
Battery Selection: The choice for our mobile robot was 
a Lithium-Ion Cylindrical Battery. Each is rated 3.7V. 
Considerations include:  

- Lower cost than other alternatives like LiPo battery. 

- Lighter  
- Easy to recharge and requires less monitoring 

compared to LiPO which is sensitive and 
requires regular monitoring. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Lithium-Ion Batteries 

 
 

4. Wiring and Connectors  
Ensured that all wiring and connectors were rated for the 

currents required. For example, breadboards and jumper 
wires should only be used for very low current, while 
heavier-duty connectors like XT60 are required for high-

current applications.  
5. Power Bank Choice  

Power bank was used to power the Raspberry Pi. The 
following Product Power Parameters were considered: 

Capacity: 20000mAh (74Wh) Input 1(Micro-USB): 
5V/2A  
Input 2(Type-C): 5V/3A 

Output 1(USB-A): 5V/3A (Max)  
Output 2(USB-A): 5V/3A (Max) 

Output 3(Type-C): 5V/3A (Max)  
The output did not exceed 5V / 3A which is safe for the 
Raspberry Pi.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 Power Bank Powering Raspberry Pi 

 
 

5. Safety Features 
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- Power switch: Allowed for safe disconnecting of 
the battery.  

- Fuses: Protected the circuit from short circuits by 
breaking the circuit if too much current flowed, 

preventing damage and fire hazards.  
Motors  
Designing a motor system for the robot involved several 

key considerations and calculations to ensure optimal 
performance. These considerations were broken down 
into several layers, each contributing to the motor's 

overall operation and control. 

 

1. Motor Selection  
- Motor Type: Different types of motors (for example: 

brushless, stepper) require varying control methods, so 

it was essential to choose the right type for the 
application. We chose a DC 12V 200 rpm motor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 Motor Selected (DC 12V 200 RPM with Encoder Module) 

 
- Voltage and Current Requirements: Motors 

typically required higher voltage and current than what 

a microcontroller could provide. For example, a 12V 
DC motor was used and the motor's current rating was 
considered to avoid overloading the control circuitry.  

-Motor with Encoder: Motors equipped with encoders 
provide feedback on speed and position, enabling closed-

loop control for more accurate and stable motor 
behaviour. We chose a motor with encoder which made 
speed and position control easier.  

2. Motor Control  
- Open-Loop Control: This simpler method maps the desired 

speed or position to a specific PWM value, but it lacks 

feedback, which makes it less accurate, especially under 

varying loads. Pulse Width Modulation (PWM) is used to 

control motor speed by modulating the on/off signal to the 

motor. The duty cycle of the PWM signal determines the 

motor's effective voltage and, thus, its speed. 

 

Duty Cycle = (On Time / Total Time) 

 

 

The motor's effective voltage is proportional to the PWM 
duty cycle. A higher duty cycle means the motor will run 
faster, and a lower duty cycle means it will run slower. 

 

- Closed-Loop Control (Feedback Control): To achieve 

more precise control, closed-loop feedback is necessary. 
Encoders on the motor provide real-time speed or position 

data, which is used to adjust the PWM signal dynamically. 
In a closed-loop system, the motor's actual performance is 

measured, and adjustments are made to match the desired 

performance.  
The most common closed-loop control method is 

Proportional-Integral-Derivative (PID) control. The 
controller adjusts the motor's input based on the difference 
between the target speed (or position) and the actual 

measured value.  
The motor's speed is calculated based on encoder feedback, 

which sends pulses corresponding to the motor's rotation. 
By counting the number of pulses in a given time frame, the 
controller can determine the motor’s speed.  
The encoder produces a certain number of pulses per 

revolution (PPR). For example, if the encoder gives 100 

pulses per motor revolution, and the gear ratio multiplies 
the output revolutions, you can calculate the total output 

revolutions using the formula: 

 

Speed (RPM) = (Encoder Counts / PPR) x Gear Ratio 
This equation converts the encoder feedback into the 
motor's speed in revolutions per minute. 

 

Closed- loop control was used to control the motors.  
3. Speed, Torque and Load Considerations  

The torque the motor generates depends on the current it 

draws and the mechanical load it encounters. The motor's 
torque needs to be considered if sufficient for the expected 
load, considering factors like gear ratios, friction, and 

inertia. 

 

Used a 200-rpm dc motor. Encoders used to control its 
speed. Compared to a 130-rpm motor, it was better to have 

a higher speed motor whose speed could be reduced than a 
low-speed motor (130 rpm) whose speed cannot be 

increased beyond the rated value. 

 

Suppose the 65mm wheel diameter, and max speed = 
wr, Then.  
w_1 = 130*2π/60 = 13.61 rad/s 

w_2 = 200*2π/60 = 20.94 rad/s 

 

max velocity_1 = w1xr = 0.44m/s 

max velocity_2 = w2xr = 0.68m/s 

4. Power  
The motor and the motor driver should have a sufficient 
and stable power supply. For example, the L298N motor 

driver has a voltage drop that needs to be accounted for, 
meaning the motor may receive less than the input voltage. 
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Lithium-ion batteries was selected to power the 
motors, which was chosen for their lower cost and met 
power requirements of the motors.  

5. Communication  
Serial (UART): Used to send speed commands to 
the Arduino motor controller from the Raspberry Pi. 
CAN, I2C, or PWM can also be used in other setups 
depending on the motor controller. 

 

Motor Driver  
A motor driver was essential for controlling the motor's 

speed and direction. Key considerations include: 

- Voltage Matching: The motor driver matched the 

motor's voltage requirement (12V for motor chosen). 

- Current Capacity: The driver supported the current 

requirements of the motor. For example, the L298N motor 
driver used, supports 2A of continuous current with 

spikes up to 3A.  
 
 

Figure 8 RP Lidar 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 Motor Driver (LN298N) 

 
 

RP Lidar  
RP Lidar was the primary sensor used in the robot to 
map its environment, such as a game field. Mapping was 
essential for:  
- Environmental Awareness: Mapping enabled the robot 

to understand and navigate its environment efficiently, 
avoiding obstacles and planning paths allowing it to reach 

specific points in the game field and navigate effectively.  
- Autonomous Movement: With a map of its 
surroundings, the robot could move autonomously, 

making real-time decisions about where to go or how to 
react to dynamic changes in its environment.  
- Task Optimization: Mapping allowed for more precise and 
optimised task execution, whether it was navigating a maze, 

following a path, or interacting with objects on the game 
field. 

 
 

Why use RP Lidar?  
- High Accuracy: RP Lidar provides accurate 360-degree 
scanning of the environment, giving the robot a detailed 
map of its surroundings.  
- Low Latency: It offers fast real-time updates, which is 
essential for responsive movements in dynamic 

environments.  
- Lightweight and Compact: It is small and light, which 
minimises the weight burden on the robot, allowing for 
faster and more agile movement.  
- It is also affordable. 

 

Chassis  
The chassis supports the robot's electrical and electronic 
components. It was made from acrylic and is round in 
shape. 
Acrylic was used because it is:
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Lightweight: Acrylic is much lighter than metals like steel 
or aluminium, reducing the overall weight of the robot, 
which helps in mobility and energy efficiency.  
- Cost-Effective: Acrylic is relatively inexpensive, making it 

a cheaper option for the competition's small budget. 

- Non-Conductive: Acrylic is a poor conductor, preventing 

electrical shorts or interference with electronic components. 

- Ease of Machining: Acrylic is easy to cut, shape, and 

drill, allowing for greater flexibility in design and quicker 
assembly. It was cut using a laser cutting machine which 
was fast and efficient. Assembling was also easy and quick 

using glue. 

 

Why rectangular shape?  
- Improved Manoeuvrability: A round chassis allowed for 
better movement in tight spaces since the corners won't get 

caught on obstacles. This shape is necessary as the robot 
needs to rotate frequently in the game field.  
- Even Weight Distribution: A round design helped 
distribute weight more evenly, improving balance 
and stability, during turning or when carrying loads.  
- Optimised for omnidirectional movement as the robot 

used castor wheels making smooth turns possible. 

 

Couplers  
Couplers were used to connect the motors and 
rubber-driven wheels. They were used because of:  
- Efficient Power Transfer: Couplers ensure efficient 
transmission of torque from the motor to the wheels, 
minimising energy loss.  
- Vibration Dampening: They help to absorb small 
misalignments and vibrations between the motor shaft 
and wheels, prolonging the lifespan of both the motor and 

the wheels.  
- Couplers make it easier to align components (wheels and 

motor shafts) that may not have perfectly matching shafts 

sizes, improving flexibility in the mechanical design.  

 
 

 

Motor Brackets  
Motor brackets were used to mount the motors securely 
on the chassis. They were used for:  
- Stability: Properly mounting the motors ensures that they 

stay securely in place, even when the robot is moving over 
uneven terrain or at high speeds.  
- Alignment: Motor brackets help to align the motor 

correctly with other components, such as wheels and 

couplers, ensuring smooth and efficient operation. 

- Vibration Reduction: A secure mount reduces vibrations 
that can cause wear and tear on both the motor and the 
chassis, improving the robot’s durability.  
- Brackets provide flexibility in positioning motors, 
allowing adjustment of motor placement based on the 
robot's overall layout.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11 Motor Bracket 

 
 

Rubber Wheels  
Driven by the DC motors to move the robot from one point 
to another. 65 cm in size. Chosen because of its ease to be 

coupled with the motors using couplers. Its size (65 cm 
diameter) was ideal for stability and lidar mapping (not too 
high or too low). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10 Coupler 
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Figure 12 Rubber Wheels 

 
 

Castor Wheels  
Two castor wheels were used. Castor wheels were 
used because: 

 

1. Manoeuvrability and free rotation: Castor wheels allowed 

the robot to turn smoothly without needing all wheels to be 

powered. This was useful for multi-directional movement. 

 

2. Stability: They provide additional support and 
stability, as the robot had two main drive wheels, 

preventing the robot from tipping over. 

 

3. Reduced Friction: Castor wheels can swivel in any 
direction, minimising the friction that could occur when 
the robot turns, allowing smoother and easier movement. 

 

4. Cost: Castor wheels are simpler and cheaper 
than powered wheels. 

 

5. Compact Design: They require less space than the 
driven wheels. 

 

 

Lessons learnt: 

 

- Accuracy in CAD designs dimensions.  
- Ensuring purchase of the components having the 

same dimensions as the designed model. This 
involves checking the datasheets and seller’s 
descriptions.  

- Use of bolts and screws is encouraged over glue due 

to its ease of removal in case of errors during 
placement. Glue is difficult to remove and could 

alter aesthetics, material or dimensions. 

 

C. Navigation 

 

1. Introduction  
This section covers the navigation stack implemented on a 

robotic system using ROS2. The navigation setup integrates 

multiple software packages, allowing the robot to 

autonomously move and explore its environment. The 

primary goal of the navigation system is to enable the robot 

to map, localize, and navigate in a simulated or real-world 

environment using ROS2.  
2. Navigation Packages Overview  
The ROS2 navigation system relies on several key 

packages to ensure robust and accurate movement. Below is 

an overview of the key packages used: 

 

Sllidar: This package integrates a 2D LIDAR for scanning 

the environment. The LIDAR provides distance 

measurements to obstacles, which are critical for mapping 

and localization tasks. 

 

Serial: The serial package opens a communication link 

(typically via USB or UART) between the Raspberry Pi and 

Arduino.Velocity commands, such as linear and angular 
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velocities, are sent from the Pi to the Arduino over this serial 

connection.The Arduino processes these commands to 

control the motors and sends encoder data back to the Pi for 

odometry calculation. 

 

Diff drive Arduino: This package interfaces with a 

differential drive robot. It sends commands to the motors 

based on velocity inputs, typically received from ROS2 

navigation or teleoperation packages, and reads feedback 

from encoders for odometry. It uses the serial package to 

manage communication between the Raspberry Pi and the 

Arduino. 

 
Gazebo: A simulation environment used to simulate the robot 

in a virtual environment, including sensors like LIDAR and 

actuators like motors. Gazebo is tightly integrated with ROS2, 

allowing real-time testing of navigation algorithms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14 Robot in Gazebo 

 

 

Rviz: A visualization tool in ROS2 that allows the user to 

view the robot's sensor data, map, and planned trajectories in 

real time. This is useful for debugging and tuning the 

navigation stack. 

 

Colcon: A build tool for ROS2. It is used to compile and 

link the various packages within the navigation stack. 

 

Teleop_twist: This package enables manual control of the 

robot using a keyboard or joystick. It publishes velocity 

commands (`/cmd_vel`) that are interpreted by the diff drive 

package to control the robot's motors. 

 

Twist_mux: This package multiplexes various sources of 

velocity commands (`/cmd_vel`), ensuring that the correct 

source (e.g., teleoperation or autonomous navigation) has 

control over the robot at the appropriate time. 

 

Nav2: The main package for ROS2 navigation. It provides 

functionality for planning, controlling, and recovering the 

robot's trajectory. Nav2 integrates sensors (like LIDAR) and 

odometry data for localization, map updates, and 

 

 

autonomous path planning. 

 

Slam Toolbox: This package handles Simultaneous 

Localization and Mapping (SLAM), allowing the robot to 

build a map of its environment while localizing itself within 

that map. It’s crucial for operations in unknown or dynamic 

environments. 

 

ROS2 Control: Used to manage robot hardware resources 

(such as motors and sensors), ensuring that commands from 

navigation or teleoperation systems are properly executed on 

the hardware side. 

 

3.Robot Navigation Architecture  
The ROS2 navigation stack is designed to enable 

autonomous navigation by integrating perception, planning, 

and control components. The navigation process consists of 

the following phases: 

 

1. Perception: The robot uses the RPlidar sensor to 

gather distance data from its environment. This data 

is processed by the SLAM Toolbox to generate a 

2D occupancy grid map.  
2. Localization: Once the map is generated, the robot 

localizes itself within the environment. Localization 

is based on the matching of LIDAR scans to the pre-

built map.ACML may be used.  
3. Path Planning: Using Nav2, the robot determines a 

path to a goal position. Nav2 uses algorithms 

like,Dijkstra's or A* to plan optimal paths, 

considering the known map and obstacles.  
4. Control: The robot’s motors are controlled via the 

diff drive Arduino package, which receives velocity 

commands (from Nav2 or Teleop_twist) through 

the Twist_mux. The robot then follows the planned 

trajectory.  
5. Recovery: Nav2 includes recovery behaviors in 

case the robot encounters issues (e.g., getting 

stuck). This could involve backing up, rotating in 

place, or re-planning a new path. 

 

4. Simulation and Testing  
Testing the navigation system is performed in the Gazebo 

simulation environment. Gazebo allows for creating complex 

environments with obstacles, ramps, and walls, simulating the 

robot's interaction with its surroundings. 

 

In the simulation, the following components are tested:  
LIDAR sensor accuracy: Ensures that obstacle detection  

works as expected.  
● Path planning: Verifies that Nav2 can compute 

paths in various types of environments.  
● Localization robustness: Tests how well the robot 

localizes itself using SLAM Toolbox and odometry.  
● Obstacle avoidance: Ensures the robot can avoid 

obstacles in real-time by recalculating paths when 
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necessary. 

 

All simulated outputs can be visualized in Rviz, providing 

insight into sensor readings, map quality, and the robot's 

trajectory.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15 Gazebo Simulation showing the robot and the map (game field) 

 
5. Challenges  
Several challenges are encountered when building the 

navigation stack:  
Sensor noise: LIDAR data can be noisy, which affects the 

accuracy of mapping and localization.  
Odometry drift: The encoders used by the diff drive 

system can introduce errors over time, affecting the robot’s 

localization accuracy.  
Real-time performance: Ensuring that the entire 

navigation stack runs in real time, especially with complex 

environments and many obstacles, requires fine-tuning of the 

control loop and sensor processing rates. 

 

6. Conclusion  
The ROS2 navigation stack leverages multiple packages to 

create a robust, autonomous navigation system. The integration 

of LIDAR-based perception, SLAM for mapping, and 

differential drive control allows the robot to navigate its 

environment efficiently. Future work may involve optimizing 

the system for hardware deployment and improving recovery 

behaviors in complex environments. 

 

D. Experimental Results 

 
 
 
 

 
Figure 16 ROS2 Interaction 

 

 

1. Testing Procedures 

 

1. Unit Testing: Individual components like the motors, 

sensors (RP Lidar), and motor drivers (L298N) were tested 

independently. This included:  
- Motor Testing: The motors were tested under different 

speeds, ranging from 100 RPM to 200 RPM, with feedback 

from encoders to validate speed control and accuracy.  
- Sensor Testing: The RP Lidar was tested for its 

mapping accuracy in static and dynamic environments. The 

sensor was validated by comparing its readings with known 

distances and obstacles on the game field. 

 

2. Integration Testing: Once individual components were 

tested, the integration of the mobile platform and navigation 

system was done. Key aspects tested included:  
- Synchronisation between motor control and real-time 

mapping.  
- Power stability from LiPo batteries and the power bank 

for smooth operation without unexpected shutdowns or 

overheating.  
- Closed-loop control of the motors using encoder 

feedback for precision and path accuracy. 

 

3. Simulation: Before deploying in real-world 

environments, the team utilised Gazebo and Rviz simulations 

to test the robot's mapping and navigation capabilities. The 

robot was simulated navigating complex game fields with 

obstacles, testing its path-planning algorithms and 

responsiveness to environmental changes.  
- Gazebo Simulation: Focused on physical interactions 

like obstacle avoidance, smooth movement, and collision 

detection.  
- Rviz: Used for visualising Lidar-based mapping and 

real-time sensor data to assess the navigation system’s 

accuracy. 

 

2. Testing Outcomes 

 

To ensure the reliability and performance of the Project 

we carried out extensive testing, including unit tests, 

integration tests, and simulations using ROS2, Rviz, and 

Gazebo, as well as real-world field trials. 

 

- Motor Performance: At lower speeds (200 RPM), the 

motor encoders provided closely matching readings, 

ensuring reliable movement. However, at higher speeds (200 

RPM), encoder discrepancies increased, requiring 
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calibration. The motor restart issue at longer distances was 

identified, which temporarily fixed encoder inconsistencies. 

 

- Power Supply: The Lithium-ion battery and power bank 

were tested for voltage stability under varying loads. Both 

power sources provided adequate power without any 

significant dips, allowing consistent performance in the 

motors and Raspberry Pi. 

 
- Mapping and Navigation: The RP Lidar produced highly 

accurate maps of the game field in both simulation and physical 

tests, allowing the robot to navigate autonomously with minimal 

error. In real-world tests, the robot successfully detected and 

avoided obstacles, demonstrating the efficacy of the integrated 

mapping and control systems. 

 

3. Reliability and Robustness 

 

- Robustness Analysis: The acrylic chassis proved durable 

during field tests, showing no signs of warping or damage 

under stress. The motor brackets provided stable mounting, 

minimising vibrations that could lead to component wear 

over time. 

 

- Reliability Modelling: Based on the testing data, failure 

points were identified in the motor control system at higher 

speeds, specifically related to encoder accuracy. To mitigate 

this, the team implemented calibration strategies and 

adjusted the control algorithms to improve speed 

synchronisation. 

 

- Failure Analysis: The team performed failure analysis on 

key components such as the motors and power system. No 

major failures were detected, but minor issues like motor 

speed discrepancies and temporary power fluctuations were 

noted and addressed in the design. 

 

The robot's performance met the expected design criteria, 

with minor improvements required to enhance speed 

accuracy at higher RPMs and to further optimise power 

management during extended operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17 Robot under game field testing (navigation) before the 
competition 
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