
[Team 1]​ 1 of 11

Technical Design Paper Template​
for the Robotics Dojo Competition 2025

First A. Amos Oniare, Second B. Dismas Karimi, Third C. Gareth Kipkoech, and Fourth D. Fundi Brian (KNIGHTS)

I.​ INTRODUCTION
Robotics Dojo is a project-based robotics training

program under the AFRICA-ai-JAPAN Project at the Jomo
Kenyatta University of Agriculture and Technology with its
primary objective being the encouragement of robotics
research in Kenya. The program creates a robotics
challenge each year in which students form teams and
compete. The challenges are always evolving from previous
years in an effort to build robots that can be beneficial in the
real world environments such as industries.

This year’s challenge was the design and development of
an autonomous mobile robot that can collect and offload
loads while navigating on uneven terrain, within a changing
environment and use a camera for image detection and
classification of potato diseases. The robot’s performance is
gauged on how accurately and fast it can perform
navigation, image detection and collection and offloading of
loads. This is an improvement of last year’s challenge that
only included autonomous navigation of a mobile robot.

II.​ DESIGN STRATEGY
The robot had to be able to do the following:

●​ Map of its environment and save the map.
●​ Autonomous navigation of its environment using

the saved map.
●​ On board load transportation and dropping at a

designated location.
●​ Image classification of healthy and diseased

potatoes using a camera.
The above requirements were met by use of appropriate
mechanical, electrical and software systems that worked
together to accomplish a common goal. After careful
consideration, the following elements that make up the
robot were created:

●​ Robot frame
●​ Offloading mechanism
●​ Drivetrain and propulsion
●​ Power Supply
●​ Wheel mounts and wheels
●​ Control Scheme
●​ Environment detection devices
●​ Mapping, Localization and Navigation system
●​ Image detection system

Robot Frame

It represents the physical structure that supports all the
components such as sensors, actuators, electronics and other
mechanical elements of the robot. It was made from acrylic
which is relatively simple to fabricate using a laser cutter
and offers sufficient mechanical strength ensuring the robot
has a rigid core that can sustain collisions without damage
and can reduce vibration transmission that may influence
the accuracy of sensor data.

Offloading mechanism

An arrangement was devised that could tilt the bed as well
as open the gate using only one actuated link.The
arrangement consisted of a bed-tilting mechanism and a
gate actuation mechanism.

The bed tilting mechanism was a four-bar chain in
double-rocker configuration. It is illustrated in figure A.
The bed was the follower link, a servo arm being the crank
and a coupler connecting rod.

Figure A: Bed tilting mechanism

The gate forms part of a simple first class lever anchored on
one side by a hinged link. It is illustrated in figure B. The
pivot link and gate were rigidly connected, making them a
single link.

[Team 1]​ 2 of 11

Figure B: Gate actuation mechanism

With this arrangement, it was possible to pivot the bed as
well as raise the gate using only one actuated link.

Drivetrain and propulsion

This system was required to move the robot accurately and
reliably on uneven terrain. It was made up of 4 motors with
rotary encoders to provide odometry data and was powered
by a lithium polymer (LiPo) battery via the drv8833 motor
drivers. The number of motors was chosen to be four to
increase traction in unstable surfaces and increase total
propulsion power in moving the robot on inclined planes.

Wheel mounts and wheels.

The wheels chosen were of 85mm in diameter and with
spikes for a firm grip to the ground. The wheels had a
thickness of 36mm allowing bigger ground coverage for
robot stability. These wheels were rotated using four motors
which had maximum revolutions per minute (RPM) of 200.
Hexagonal couplings were used to attach the wheels to the
motors. The wheels-motors assembly was then mounted to
the chassis of the robot using mounting brackets.

Control Scheme

This section was divided between the Mobile platform and
navigation system of the robot. An STM32F4
microcontroller was used for the mobile platform because
of its adequate input and output pins and relatively more
interrupt pins compared to arduino mega. It was responsible
for sending commands to the motors, reading encoder and
IMU data and using a serial connection to send the data to
the navigation system for processing.

The navigation system required a processor capable of
hosting the Robot Operating System (ROS2) and the
Raspberry Pi 4 was chosen because of its sufficient
processing speed and relatively low power requirements. Its
function was to receive data from the STM32F4 and Lidar,
process them and send appropriate motor commands to the
STM32F4.

Environment detection devices

The sensors used for the robot setup were quadrature
encoders, MPU-6050, RPLIDAR A1 M8 and the PiCamera
module 2. The encoders were used to track wheel rotation.
This information would assist the robot to calculate its
estimated position and trajectory. The MPU-6050 was used
to measure the robot’s orientation and movement by
integrating a gyroscope and an accelerometer. To mitigate
the odometry drift the encoder data and inertial
measurement unit (IMU) data were combined using sensor
fusion. The LIDAR was used to detect objects within the
environment of the robot using an infrared (IR) laser scan.

This data was used for simultaneous localization and
mapping (SLAM) of the robot as well as during navigation
to allow the robot to detect the introduction of new
obstacles into its environment. The PiCamera was used to
capture images of plant leaves displayed on a screen for
classification using a machine learning model. The possible
categories were “healthy”, “early blight” and “late blight”.
The PiCamera color detection on an LED strip mounted in
the game field for distinguishing payloads.

Power Supply

A Lithium Polymer battery was chosen to power the Mobile
platform due to its high energy density and relatively light
weight. The relevant power requirements for each electrical
device were calculated and used in determining the
appropriate charge capacity of the battery. Switches were
also used to disconnect the power source from the
electronic components when the robot was not in use to
reduce the likelihood of accidents caused by short circuits
occurring. The navigation system was powered by an 18 W
power bank that was connected to the Raspberry Pi which
then powers the lidar.

Mapping, Localization and Navigation System
●​ Mapping [1]. This was possible by using the laser

scan from the LIDAR to visualize the robot’s
environment. This was carried out using the slam
toolbox and a file containing the mapping
parameters such as scanning range, resolution,
maximum loop distance among others needed to
generate a clear map that the robot can later refer
to. It was possible to create a good map because of
utilizing the Extended Kalman Filter (EKF) sensor
fusion algorithm to combine the IMU data with
encoder data for accurate and reliable estimate of
the robot’s position and velocity. Therefore, even if
the actual robot skidded then in RVIZ2, the
skidding would not be registered as a robot’s
movement. The map was visualized in RVIZ2 and
later, if satisfied with its clarity, saved and
serialized for use in localization.

●​ Localization. For the robot to understand its
location with reference to its surroundings then the
saved map was used by loading it as a parameter
during localization. Upon starting the localization
launch file, the earlier created map would be
loaded on to RVIZ2 and if not satisfied with the
robot’s analysis of its current location, then a pose
estimate would be provided.

●​ Navigation. After localization, the robot was now
ready to autonomously navigate through set way
points or to just one set goal. With the assistance of
the nav2 stack with tuned parameters different
from the default, the local and global costmaps
showed the robot’s weight allocation to different
obstacles in the environment and thus being able to

[Team 1]​ 3 of 11

find an obstacle free path however long or short. A
notable implementation is adoption of the Model
Predictive Path Integral (MPPI) controller instead
of the default Dynamic Window Approach (DWA)
critic based controller after the former outshined
the latter in multiple simulation runs.

The general steps taken in the design and development of
the robot were as follows:

●​ A model and design of the robot frame and loading
and offloading system was created using a CAD
(Computer Aided Drawing) software while
ensuring the robot dimensions were within the
allowed limits i.e, 300 x 300 x 200 mm.

●​ Acrylic was chosen as the fabrication material and
a laser cutter was used to cut the desired shapes
making up the robot structure.

●​ The robot chassis was assembled using appropriate
screws and hot glue where necessary.

●​ A Bill Of Materials (BOM) was created for
purchasing electrical components and other
consumables.

●​ An electrical circuit was designed and transferred
onto a perforated board by soldering the electrical
devices and connection header pins in place.

●​ The electrical and electromechanical components
were connected to the circuit.

●​ Testing was done on the Mobile platform to ensure
it was following instructions from a written
algorithm.

●​ The sensing elements were added to the circuit and
the Raspberry pi, connected to the lidar, was
connected via serial to the STM32F4.

●​ Image detection and classification was
implemented using the Raspberry Pi Camera
module 2.

●​ Image data was used to coordinate the loading and
offloading process.

●​ Mapping and Navigation was then developed,
tested and improved.

III.​ VEHICLE DESIGN
 This section discusses the design process in detail and
explains the methodologies used during the fabrication,
assembly and programming of the robot. The vehicle design
was split in three: the mobile platform design, navigation
system design and the computer vision system design.
Improvements from last year’s robot design was also noted
and discussed.

1.​ Mobile Platform
This consists of the drivetrain and the loading and
offloading system. Figure 1 shows the robot design that was
created.
The 2D dimensioned views of the robot’s frame are shown
in Figure 1.

 Figure 1: 2D dimensioned robot frame
The 2D dimensioned views of the motor holder and
coupling assembly is shown in Figure 2.

 Figure 2: 2D dimensioned motor-coupler assembly

 Figure 3: 2D dimensioned courier/bed

[Team 1]​ 4 of 11

The 2D dimensioned views of the robot’s bed used as
courier for the colored cubes are shown in Figure 3.
A tagged 3D robot model is shown in Figure 4. It gives an
overview of the outlook of the designed robot in Autodesk
Inventor.

 Figure 4: Tagged 3D robot model

The robot consists of 2 acrylic layers at its base, 3 layers for
its front half and a loading and offloading mechanism at its
rear half. Acrylic was chosen as the fabrication material
because of the following:

●​ High impact resistance which is 10 times higher
than glass.

●​ It is Lightweight.
●​ It has excellent dimensional stability.
●​ Innate weatherability and UV resistance.
●​ High optical clarity. (Makes it easier to identify

problems in electrical connections within the body)
●​ Requires less energy when laser cutting as

compared to other materials like aluminum.
●​ Its lower price compared to other durable

alternatives like metals.
Laser cutting was chosen as the preferred method of
manufacturing instead of other methods such as 3D printing
because of the following advantages:

●​ Low lead time in fabrication
●​ High precision geometries and low tolerances.

The robot was designed to have a low height and to
accommodate the heavy components in the lowest layer,
with the aim of minimizing the height of the centre of mass.
 Four motor driven wheels were chosen to allow the robot
to have greater maneuverability and propulsion on uneven
and unstable surfaces such as gravel and woodchips. The
downside of using four wheels is that extra developments
were needed to account for drift of the robot’s odometry
during turning on the spot using a differential drive system.
This error necessitated incorporation of an IMU and
correction algorithms. The implementation of this
correction system is discussed in depth in the navigation
system.
 Once the robot frame design was completed, its electrical
system was tackled, involving proper component selection

and integration. Power calculations were performed for
power supply sizing. The motor selection was informed by
target robot acceleration.
 The final robot was estimated to weigh approximately
4kg. A target maximum acceleration of was 0. 5𝑚/𝑠2

selected. Given the above two considerations and assuming
a worst case 50% efficiency, the required motor torque is
given by:

, where a is the 𝑇 = 𝑎×𝑚×𝑟
𝑁×η = 0.5×4×0.0425

4×0.5 = 0. 0425 𝑁𝑚
target acceleration, m mass of the robot, r radius of the
drive wheels and N the count of driven wheels
A target speed of is selected. Given the wheel 0. 8𝑚/𝑠
radius, the appropriate motor rotation count is given by:

, where v is 𝑅𝑃𝑀 = 60𝑣
2×π×𝑟 = 60×0.8

2×π×0.0425 = 179. 751𝑟𝑝𝑚
the target speed, and r is the driven wheel radius.

Typical current draw is calculated with the relation:

, where T is 𝐼 = 𝑇×ω
𝑉 = 0.0425×2π×179.751÷60

10.5 = 0. 0762𝐴
the required torque, ω is the required angular velocity and V
is the supply voltage.
 The motors best matching the requirements above are
found to be 12V, 200rpm with encoders.
 The other components that make up the mobile platform
include:

●​ DRV8833 - A Dual H-Bridge Motor Driver with
1.5 A peak current output per channel and
under-voltage, over-current, and over-temperature
protection.

●​ Hex Coupling - Used for connecting the motor
shaft to the wheels.

●​ STM32F4 microcontroller - Used for low-level
tasks like controlling motors, fetching data from
encoders and IMU.

●​ 4 brushed DC motors with quadrature encoders-
For propulsion.

●​ MG996R Servo Motor - Used for loading bed
actuation.

●​ Lipo battery - Providing electrical power to the
system.

●​ Perforated board - For mounting and soldering
electronic components.

●​ Power Switch - Allows for the isolation of the
electrical circuit from the power source when the
robot is not in use.

●​ Buck converter - Steps down DC voltage from
battery.

●​ Japan Solderless Terminals (JST) - Used for
component connection to the main board.

●​ Male and female header rows - Used for modules
and cable connection.

●​ Cable ties - For bundling and securing wires and
electronics.

●​ Motor mounting brackets - For securing the motors
to the robot frame

[Team 1]​ 5 of 11

Once the components were selected and a circuit made,
power calculations were applied to determine the correct
rating of the Lipo battery and verify if the connections were
safe and functional.

​ ​ ​ equation ‘I’ 𝑃 = 𝐼𝑉 𝑊𝑎𝑡𝑡𝑠()
Where; ‘P’ is Power in Watts
​ ‘I’ is Current in Amperes
​ ‘V’ is Voltage in Volts

The following chart is the representation of the electrical
circuit with the current and voltage values of each
component. Devices operating on the same voltage value
were connected on the same voltage line and their current
draws were summed as shown in Figure 5.

 Figure 5: Electrical flow diagram
Two power sources were used, one for powering the
Raspberry Pi and the other the motors. It was more
convenient to use a power bank with a type C cable to
power the raspberry pi. To determine if the Power Bank was
capable of providing enough power, the total power drawn
by the Raspberry Pi and the RPLidar was calculated as
follows:
P = (1.5 x 5) + (1 x 5)= 12.5W
This value is well below the rated value of the power bank.
The capacity of the power source for the rest of the
components was determined by calculating the power
requirements of each device and finding their sum.
Power from Lipo Peak power required by (1 Servo motor ≈
and 4 DC motors and encoders)
P (2.5 x 6) + 4(1.5 x 10) = 75 W ≈
Therefore the 3S 2200mAh Lipo battery that was chosen
had a Power rating of 24.4 Wh which can supply the peak
current required by the system at 11 V.
 Closed loop control of the motors was achieved by
implementing the PID (Proportional Integral Derivative)
control which is made up of the following elements:

●​ Proportional (P) Coefficient Kp - Its effect
increases proportionally with magnitude of error. It
increases responsiveness of the system but cannot
effectively eliminate steady-state error. It was
decided after testing to assign it a value of 200.

●​ Integral (I) Coefficient Ki - Its effect grows as the
sum of errors over time increases. It therefore
controls steady-state error. It was assigned a small
value of 1, as much larger values increase system
instability.

●​ Derivative (D) Coefficient Kd- Its effect increases
when rate of change of error increases. It therefore
controls overshoot by slowing down change as the
final value is approached This coefficient was set
to the value 120.

●​ Scale Ko - It scales the output of the controller by
a factor. The value found appropriate was 50.

Challenges in Hardware Implementation

1.​ USB device enumeration failure - attempts to
program the microcontroller over USB were
initially unsuccessful. The STM32F4 would not be
recognized as a USB device by the computer,
regardless of the Operating System used. It was
discovered that some Input-Output (IO) pins are
inappropriate for use with the USB bootloader. The
USB FS D+ and USB FS D- pins in particular had
the greatest effect. Figure (i) shows the
STM32F401 pinout and the affected pins.

Figure (i): STM32F401 pinout with affected pins
highlighted
The solution was to move IO devices from those
pins to unaffected pins.

2.​ Motor jerk when running closed loop motor
control - open loop motor control performed as
expected, and reading encoder data alone by
spinning the motors by hand was okay as well.
However, activating both motors and encoder
reading produced erratic behaviour. After
extensive research and testing, it was discovered
that motor wire length and shape was the
contributor. To keep wiring tidy, excess motor and
encoder cables had been coiled into loops. This
unintentionally created strong electromagnetic
coupling between the noisy motor power lines and
the sensitive encoder signals. The result was EMI
from inductive, capacitive, and antenna-like

[Team 1]​ 6 of 11

effects, which corrupted encoder readings. As a
workaround, motors had to be driven at a low
PWM frequency of 500 Hz and lower. The figures
(ii) and (iii) illustrate the cable management.

​

​ Figure (i): Wire loops present before.

​ Figure (ii) Wire loops removed.
​
After removing the loops and shortening the cables, the
interference was eliminated, and clean encoder signals were
maintained even with PWM frequencies above 30 kHz.

2.​ Navigation System
In the design of the robot navigation system, multiple
critical steps were covered, including data conversion from

encoders and IMU, SLAM mapping, and path planning. A
comprehensive robot navigation system framework to
realize the navigation capability was designed. This
framework implemented distributed communication
through the ROS system, enabling collaboration between
SLAM mapping and navigation path planning. A high-level
overview of the system is shown in Figure 6.

 Figure 6: Navigation System Flow Chart

 In the previous Robotics Dojo competition, encoder data
was the only source of odometry data for the robot. The
position of the robot was calculated based on counts of
wheel rotations and the differential robot motion model.
This is a simple method for robot localization but it only
works accurately when the robot’s wheels do not slip. This
year’s competition features uneven terrain and loose
surfaces making it increasingly difficult to achieve motion
without any slip, which throws off the localization. To solve
this problem, an Inertial Measurement Unit (IMU) was
introduced to complement the encoders. Data from both
streams was used together to provide accurate and reliable
robot localization even with wheel slip. This method of
using data from more than one sensor for a single purpose is
known as sensor fusion and it has the following advantages:

●​ Enhances accuracy of resultant data.
●​ Increases robustness of the system as it will

continue functioning even if one sensor fails.
●​ Provides resilience against intermittent/missing

data
 The Extended Kalman Filter (EKF)[2] was used to make
the system resilient to sensor noise for steady more
meaningful readings. EKF is a development on the Kalman
Filter which allows it to process non-linear functions of a
system, better suited for real world applications. The basic
principle of operation of this filter is as illustrated in figure
7:

[Team 1]​ 7 of 11

 Figure 7: Extended Kalman Filter Illustration

The process represents the system being monitored such as
a moving body, the measurements stand for the data
collected from sensors and estimates are the results from the
filter’s model of the system. From a high-level perspective,
the algorithm follows a 2-step cycle: (1) Predict, (2)
Update.
In the prediction step, the system’s state is projected
forward using a non-linear motion model, creating the priori
state estimate. In the update step, incoming sensor
measurements are compared to the predicted state, and the
state estimate is corrected to create the posteriori state
estimate.
Using the XYZ coordinate frame with Z pointing up from
the floor, the robot’s state (position and orientation) can be
described by just 3 values: X position, Y position and Yaw
angle (rotation angle about the Z axis).

The state estimate is a function of the previous state, the
previous velocities and some noise term. Mathematically
stated[3]:

 𝑠𝑡𝑎𝑡𝑒
𝑡
 = 𝑠𝑡𝑎𝑡𝑒

𝑡−1
+ 𝑑𝑡 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠

𝑡−1
+ 𝑛𝑜𝑖𝑠𝑒

In matrix form, and substituting the differential drive model
we get:

 provides the current state estimate. 𝑠𝑡𝑎𝑡𝑒

𝑡
Now the predicted sensor measurements is given by[3]:

Where H is the measurement matrix, n is the number of
sensor measurements at time t, and is the sensor noise
term.
Once the estimated state and predicted sensor
measurements at current time t are obtained, a weighted

average is calculated to create an improved current state
estimate. The successive steps in the EKF algorithm
automatically determine the appropriate weights.
 Robot_localization[4] a ROS2 package makes
implementation of EKF in a project simple. The required
inputs are the wheel encoder data, the IMU data, process
noise covariances and velocity commands. The filter is
applied to all sensor inputs before being combined to obtain
a single reliable odometry output. The computation is done
by a node named /ekf_node, which is subscribed to the
/imu/data and the /diff_cont/odom topics. The node then
publishes processed odometry data to the /odometry/filtered
and /tf topics. The former is the current state estimate of the
robot and the latter is the current transform of the robot base
link.
 Other than noise reduction, the EKF robustness against
gaps in data collection due to, say, sensor interruption. This
is because the prediction step, which utilizes the differential
drive robot model, can extrapolate into the future. However,
prediction for extensive durations leads to error
accumulation, since sensor data, although noisy, still
contains some information. This information is crucial for
correction where predicted data is compared with noisy data
to obtain a final state estimate that is both accurate and low
in noise.

Robot navigation was achieved using the ROS2 Nav2 stack
for path planning and control while slam toolbox was
employed for SLAM.

3.​ Computer Vision System
 This section was implemented using the Raspberry Pi
Camera Module 2 which was the image source. The image
data collected had the following functions:

●​ Classification of potato leaves as being healthy,
having early blight or late blight.

●​ Coordinated the loading and offloading process
Classification of potato leaves was achieved using a
package provided by Robotics Dojo with a trained model.
The package creates a node subscribed to the /image topic
and an inference engine whose result is annotated onto the
source image. The labelled image is then published to the
/inference_image topic which can be visualized in RVIZ
under the Image display plugin.
 The goal for Robotics Dojo was to make loading and
offloading processes fully automated. The robot would have
to discriminate loads based on color and deliver the load to
a bay of matching color. During loading, two LED strips
were placed in front of the loading bay to give a signal on
the color of the load the robot has received such as lighting
the red led strip when the load is of a red color. The robot
then identifies and saves the led color, proceeds to navigate
autonomously to the offloading bay and once again uses the
camera to identify the bay with a matching color as the load
it is carrying such as offload on the red bay if the load
carried is red.
 A simple workflow was implemented using the
OpenCV[5] module in Python. OpenCV allows detection of

https://www.codecogs.com/eqnedit.php?latex=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_%7Bt%7D%20%5C%5C%5C%5C%20y_%7Bt%7D%20%5C%5C%5C%5C%20%5Cgamma_%7Bt%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%26%200%20%26%26%200%20%5C%5C%5C%5C%200%20%26%26%201%20%26%26%200%20%5C%5C%5C%5C%200%20%26%26%200%20%26%26%201%20%5Cend%7Bmatrix%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_%7Bt-1%7D%20%5C%5C%5C%5C%20y_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Cgamma_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20%5Ccos(%5Cgamma_%7Bt-1%7D)%20%26%26%200%20%5C%5C%5C%5C%20%5Csin(%5Cgamma_%7Bt-1%7D)%20%26%26%200%20%5C%5C%5C%5C%200%20%26%26%20dt%20%5Cend%7Bmatrix%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20v_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Comega_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20noise_%7Bt-1%7D%20%5C%5C%5C%5C%20noise_%7Bt-1%7D%20%5C%5C%5C%5C%20noise_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20y%5E%7B1%7D_%7Bt%7D%20%5C%5C%5C%5C%20y%5E%7B2%7D_%7Bt%7D%20%5C%5C%5C%5C%20.%5C%5C.%5C%5C%5C%5C%20y%5E%7Bn%7D_%7Bt%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20H%5E%7Bt%7D_%7Bnx3%7D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_%7Bt%7D%20%5C%5C%5C%5C%20y_%7Bt%7D%20%5C%5C%5C%5C%20%5Cgamma_%7Bt%7D%20%5Cend%7Bmatrix%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20%5Comega_%7B1%7D%20%5C%5C%5C%5C%20%5Comega_%7B2%7D%20%5C%5C.%5C%5C.%5C%5C%5C%5C%20%5Comega_%7Bn%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Comega#0

[Team 1]​ 8 of 11

entities in an image such as color, shapes, faces and many
more. The camera was run continuously to fetch real-time
images. Using the Real-Time Streaming Protocol (RTSP),
the images were sent over IP from the Raspberry Pi to the
main computer for processing. This was adopted to relieve
the raspberry pi off the heavy inference processing duties.
The algorithm running on the main computer for simple
real-time color detection was as follows:

1.​ An image is fetched from the RTSP stream and
saved to memory

2.​ The image is converted from BGR to HSV color
spaces

3.​ Color ranges in HSV format are defined
4.​ Using the color ranges, a mask is created for each

color
5.​ The mask is dilated (a morphological transform) to

reduce effects of image noise
6.​ Contours in the masked image are identified
7.​ Bounding rectangles corresponding to the contours

are drawn on the image for tracking
8.​ Bounding rectangles are counted
9.​ Text is affixed for each bounding rectangle
10.​ The color with the largest count of bounding

rectangles is published to a ROS topic
/detected_color

Simple conditional checks were created to check for
specific sequences in detected color. Servo actuation would
be done only if a color was detected for 2 consecutive
detection events after a time interval.
​ Challenges in Implementing Color Detection
An initial implementation of the algorithm had step 8
identify the largest contour by area. While initially
promising it failed when the target color did not cover the
full Field-of-View of the camera. The simple algorithm
would, for instance, identify the color of the frame of the
screen as well as the color shown on the screen itself. Of
course this gave erroneous results that broke the algorithm
downstream. However, it was noticed that for a given target
color, many contours would be identified within the frame,
along with one large contour for the frame on the screen.
The team decided to shift strategy to counting bounding
boxes, rather than ranking them based on area.

IV.​ EXPERIMENTAL RESULTS
The performance of the robot was tested and assessed in

the following areas:
●​ Quality of map produced.
●​ Accuracy of colour detection.
●​ Coordination of the courier offloading based on

image data.
 The quality of the map produced was greatly dependent
on the source of odometry data. A comparison was made on
the maps obtained by using encoder data only and when
using sensor fusion to combine encoder and IMU data. Two
simple tests were done in simulation:

1.​ Turning in place 90 degrees clockwise from the
initial position

2.​ Driving around a complete loop from the initial
position

Figures 8 and 9 show the initial position of the robot at
launch of SLAM .

Figure 8: Virtual robot initial position

​ Figure 9: Rviz visualization at initial position

Figure 10 shows the result of turning in place without fused
odometry.

[Team 1]​ 9 of 11

​ Figure 10: In-place turning without fused
odometry

Figure 11 shows the result of turning in place with fused
odometry

​ Figure 11: In-place turning with fused odometry

Figure 12 shows the generated map without fused
odometry.

​ Figure 12: Map without fused odometry

Figure 13 shows the generated map with fused odometry.

​ Figure 13: Map with fused odometry

Figure 14 shows the generated map without fused odometry
with a modified driving style

[Team 1]​ 10 of 11

​ Figure 14: Map without fused odometry with
modified driving style

It is quite clear from figures 10 and 11 that sensor fusion
performs considerably better than odometry with wheel
encoders alone. There still exists some translational drift in
laser scan in figure 11 however in practice this is easier to
compensate for than rotational drift. Figures 12 and 13
illustrate that EKF is indispensable as the map without
fused odometry is unusable, and further cement the
difference in significance between translational and
rotational drift. An interesting finding shown in figure 14
was that the driving style also played a role. To obtain that
result, in-place turning was avoided completely, instead
opting to combine some linear velocity with all angular
velocity. However, the alignment of the laser frame was still
compromised at the tail end of the run when restoring the
robot’s orientation. This proves that although it is possible
to map accurately without IMU data, it is not dependable,
especially since autonomous robot navigation extensively
uses in-place turning to clear up laser scan drift.

The results from the real robot closely resembled those
obtained from simulation.

 The Courier was designed to offload only when the robot
had arrived at the offloading bay that was colored to match
the color of the object loaded on the robot. OpenCV was
used as a tool to classify image data into a specific range of
colors such as red or blue. Additional functionality was
added to this image controlled loading and offloading
process to ensure that it functions as designed. OpenCV
allows one to write a python script that displays an image
from the pi camera with labelled rectangular contours
encircling an identified image such as a color or an object.

Two methods of color identification were implemented and
compared. The first was selecting the largest contour by
area and publishing the identified color as the label of the
contour and the second was selecting the label with the
most contours and publishing the label as the identified
color. The described methods are illustrated in the following
image:

From the image, it is observed that the red contours are two
in number while the blue contours are three in number
while the largest contour by area is the red contour, only if
the larger red contour in the background is ignored.
 As discussed in the Vehicle Design section, the latter
method was chosen because of the following reasons:

●​ It was less prone to error. The first method could
identify a contour larger than the object being
observed in the background and send the wrong
data. The second method would rely on contour
concentration, such as an led, and send the led
color as the correct color of the image.

●​ It was more reliable. An object with a consistent
and bright color will trigger the correct color
identification without being affected by
background color identifications that may not have
high intensity.

V.​ ACKNOWLEDGEMENT
The Robotics dojo competition development and

implementation was greatly dependent on the 2025
Robotics dojo interns who created comprehensive video and
written tutorials, as well as presentations on various topics.
Acquisition of robotic parts was also made possible by the
Japan International Cooperation Agency (JICA).

VI.​ REFERENCES
[1] E. Renard, ROS 2 from Scratch: Get Started with ROS 2
and Create Robotics Applications with Python and C++.*
Birmingham, U.K.: Packt Publishing, 2024, pp. 343–344.
[2] Ribeiro, M. I. I. (2004). Kalman and extended Kalman
filters: Concept, derivation and properties. Institute for
Systems and Robotics, 43(46), 3736-3741.
[3] AutomaticAdisson, Extended Kalman Filter with
Python, 2025, Online
https://automaticaddison.com/extended-kalman-filter-ekf-w

[Team 1]​ 11 of 11

ith-python-code-example/.
[4] Tom Moore, Robot Localization Wiki, Online Article,
2024,
https://docs.ros.org/en/melodic/api/robot_localization/html/i
ndex.html
[5] Raguraman, P., Meghana, A., Navya, Y., Karishma, S.
K., & Iswarya, S. (2021). Color detection of RGB images
using Python and OpenCv. International Journal of
Scientific Research in Computer Science, Engineering and
Information Technology, 7(1), 109-112.

VII.​ APPENDIX–SITUATIONAL AWARENESS
A significant challenge in adoption of unmanned systems

is user trust. Many applications to which robots may be of
great benefit remain unautomated simply because of lack of
trust. This highlights the need for communication between
the designer and the ultimate consumer of the system.
Therefore to bridge that gap, this team would do the
following:

●​ Inform the user that the system is autonomous,

what autonomy means and what they should
expect.

●​ Explain the most relevant constituents of the
system, especially components visible to the user.

●​ Communicate what the robot is designed to do,
and what role the user plays in its successful
operation.

●​ Discuss common misconceptions and Frequently
Asked Questions about what the robot can and
can’t do.

●​ Cite internal and/or external testing and validation
data that shows the product can complete the task,
also listing confidence levels and uncertainties.

●​ List fault conditions, how to identify them, and
resolve them if possible.

●​ Communicate that corner cases do exist and may
not be accounted for.

●​ Emphasize that the robot is not sentient or innately
malicious.

	Technical Design Paper Template​for the Robotics Dojo Competition 2025
	I.​INTRODUCTION
	II.​DESIGN STRATEGY
	III.​VEHICLE DESIGN
	IV.​EXPERIMENTAL RESULTS
	V.​ACKNOWLEDGEMENT
	VI.​REFERENCES
	VII.​APPENDIX–SITUATIONAL AWARENESS

