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I.​ INTRODUCTION 
Robotics Dojo is a project-based robotics training 

program under the AFRICA-ai-JAPAN Project at the Jomo 
Kenyatta University of Agriculture and Technology with its 
primary objective being the encouragement of robotics 
research in Kenya. The program creates a robotics 
challenge each year in which students form teams and 
compete. The challenges are always evolving from previous 
years in an effort to build robots that can be beneficial in the 
real world environments such as industries.  

This year’s challenge was the design and development of 
an autonomous mobile robot that can collect and offload 
loads while navigating on uneven terrain, within a changing 
environment and use a camera for image detection and 
classification of potato diseases. The robot’s performance is 
gauged on how accurately and fast it can perform 
navigation, image detection and collection and offloading of 
loads. This is an improvement of last year’s challenge that 
only included autonomous navigation of a mobile robot. 

 

II.​ DESIGN STRATEGY 
The robot had to be able to do the following: 

●​ Map of its environment and save the map. 
●​ Autonomous navigation of its environment using 

the saved map. 
●​ On board load transportation and dropping at a 

designated location. 
●​ Image classification of healthy and diseased 

potatoes using a camera. 
The above requirements were met by use of appropriate 
mechanical, electrical and software systems that worked 
together to accomplish a common goal. After careful 
consideration, the following elements that make up the 
robot were created:  

●​ Robot frame 
●​ Offloading mechanism 
●​ Drivetrain and propulsion 
●​ Power Supply 
●​ Wheel mounts and wheels 
●​ Control Scheme 
●​ Environment detection devices 
●​ Mapping, Localization and Navigation system 
●​ Image detection system 

Robot Frame 

It represents the physical structure that supports all the 
components such as sensors, actuators, electronics and other 
mechanical elements of the robot. It was made from acrylic 
which is relatively simple to fabricate using a laser cutter 
and offers sufficient mechanical strength ensuring the robot 
has a rigid core that can sustain collisions without damage 
and can reduce vibration transmission that may influence 
the accuracy of sensor data. 

Offloading mechanism 

An arrangement was devised that could tilt the bed as well 
as open the gate using only one actuated link.The 
arrangement consisted of a bed-tilting mechanism and a 
gate actuation mechanism.  

The bed tilting mechanism was a four-bar chain in 
double-rocker configuration. It is illustrated in figure A. 
The bed was the follower link, a servo arm being the crank 
and a coupler connecting rod.  

 

Figure A: Bed tilting mechanism 

The gate forms part of a simple first class lever anchored on 
one side by a hinged link. It is illustrated in figure B. The 
pivot link and gate were rigidly connected, making them a 
single link.  
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Figure B: Gate actuation mechanism 

With this arrangement, it was possible to pivot the bed as 
well as raise the gate using only one actuated link.   

Drivetrain and propulsion 

This system was required to move the robot accurately and 
reliably on uneven terrain. It was made up of 4 motors with 
rotary encoders to provide odometry data and was powered 
by a lithium polymer (LiPo) battery via the drv8833 motor 
drivers. The number of motors was chosen to be four to 
increase traction in unstable surfaces and increase total 
propulsion power in moving the robot on inclined planes. 

Wheel mounts and wheels. 

The wheels chosen were of 85mm in diameter and with 
spikes for a firm grip to the ground. The wheels had a 
thickness of 36mm allowing bigger ground coverage for 
robot stability. These wheels were rotated using four motors 
which had maximum  revolutions per minute (RPM) of 200. 
Hexagonal couplings were used to attach the wheels to the 
motors. The wheels-motors assembly was then mounted to 
the chassis of the robot using mounting brackets. 

Control Scheme 

This section was divided between the Mobile platform and 
navigation system of the robot. An STM32F4 
microcontroller was used for the mobile platform because 
of its adequate input and output pins and relatively more 
interrupt pins compared to arduino mega. It was responsible 
for sending commands to the motors, reading encoder and 
IMU data and using a serial connection to send the data to 
the navigation system for processing. 

The navigation system required a processor capable of 
hosting the Robot Operating System (ROS2) and the 
Raspberry Pi 4 was chosen because of its sufficient 
processing speed and relatively low power requirements. Its 
function was to receive data from the STM32F4 and Lidar, 
process them and send appropriate motor commands to the 
STM32F4. 

Environment detection devices 

The sensors used for the robot setup were quadrature 
encoders, MPU-6050, RPLIDAR A1 M8 and the PiCamera 
module 2. The encoders were used to track wheel rotation. 
This information would assist the robot to calculate its 
estimated position and trajectory. The MPU-6050 was used 
to measure the robot’s orientation and movement by 
integrating a gyroscope and an accelerometer. To mitigate 
the odometry drift the encoder data and inertial 
measurement unit (IMU) data were combined using sensor 
fusion. The LIDAR was used to detect objects within the 
environment of the robot using an infrared (IR) laser scan. 

This data was used for simultaneous localization and 
mapping (SLAM) of the robot as well as during navigation 
to allow the robot to detect the introduction of new 
obstacles into its environment. The PiCamera was used to 
capture images of plant leaves displayed on a screen for 
classification using a machine learning model. The possible 
categories were “healthy”, “early blight” and “late blight”. 
The PiCamera color detection on an LED strip mounted in 
the game field for distinguishing payloads.  

Power Supply 

A Lithium Polymer battery was chosen to power the Mobile 
platform due to its high energy density and relatively light 
weight. The relevant power requirements for each electrical 
device were calculated and used in determining the 
appropriate charge capacity of the battery. Switches were 
also used to disconnect the power source from the 
electronic components when the robot was not in use to 
reduce the likelihood of accidents caused by short circuits 
occurring. The navigation system was powered by an 18 W 
power bank that was connected to the Raspberry Pi which 
then powers the lidar. 

Mapping, Localization and Navigation System 
●​ Mapping [1]. This was possible by using the laser 

scan from the LIDAR to visualize the robot’s 
environment. This was carried out using the slam 
toolbox and a file containing the mapping 
parameters such as scanning range, resolution, 
maximum loop distance among others needed to 
generate a clear map that the robot can later refer 
to. It was possible to create a good map because of 
utilizing the Extended Kalman Filter (EKF) sensor 
fusion algorithm to combine the IMU data with 
encoder data for accurate and reliable estimate of 
the robot’s position and velocity. Therefore, even if 
the actual robot skidded then in RVIZ2, the 
skidding would not be registered as a robot’s 
movement. The map was visualized in RVIZ2 and 
later, if satisfied with its clarity, saved and 
serialized for use in localization. 

●​ Localization. For the robot to understand its 
location with reference to its surroundings then the 
saved map was used by loading it as a parameter 
during localization. Upon starting the localization 
launch file, the earlier created map would be 
loaded on to RVIZ2 and if not satisfied with the 
robot’s analysis of its current location, then a pose 
estimate would be provided. 

●​ Navigation. After localization, the robot was now 
ready to autonomously navigate through set way 
points or to just one set goal. With the assistance of 
the nav2 stack with tuned parameters different 
from the default, the local and global costmaps 
showed the robot’s weight allocation to different 
obstacles in the environment and thus being able to 
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find an obstacle free path however long or short. A 
notable implementation is adoption of the Model 
Predictive Path Integral (MPPI) controller instead 
of the default Dynamic Window Approach (DWA) 
critic based controller after the former outshined 
the latter in multiple simulation runs. 

 
The general steps taken in the design and development of 
the robot were as follows: 

●​ A model and design of the robot frame and loading 
and offloading system was created using a CAD 
(Computer Aided Drawing) software while 
ensuring the robot dimensions were within the 
allowed limits i.e, 300 x 300 x 200 mm. 

●​ Acrylic was chosen as the fabrication material and 
a laser cutter was used to cut the desired shapes 
making up the robot structure. 

●​ The robot chassis was assembled using appropriate 
screws and hot glue where necessary. 

●​ A Bill Of Materials (BOM) was created for 
purchasing electrical components and other 
consumables. 

●​ An electrical circuit was designed and transferred 
onto a perforated board by soldering the electrical 
devices and connection header pins in place. 

●​ The electrical and electromechanical components 
were connected to the circuit. 

●​ Testing was done on the Mobile platform to ensure 
it was following instructions from a written 
algorithm. 

●​ The sensing elements were added to the circuit and 
the Raspberry pi, connected to the lidar, was 
connected via serial to the STM32F4. 

●​ Image detection and classification was 
implemented using the Raspberry Pi Camera 
module 2. 

●​ Image data was used to coordinate the loading and 
offloading process. 

●​ Mapping and Navigation was then developed, 
tested and improved. 

III.​ VEHICLE DESIGN 
   This section discusses the design process in detail and 
explains the methodologies used during the fabrication, 
assembly and programming of the robot. The vehicle design 
was split in three: the mobile platform design, navigation 
system design and the computer vision system design. 
Improvements from last year’s robot design was also noted 
and discussed. 
 

1.​  Mobile Platform 
This consists of the drivetrain and the loading and 
offloading system. Figure 1 shows the robot design that was 
created. 
The 2D dimensioned views of the robot’s frame are shown 
in Figure 1. 

    
                Figure 1: 2D dimensioned robot frame 
The 2D dimensioned views of the motor holder and 
coupling assembly is shown in Figure 2. 
 

 
               Figure 2: 2D dimensioned motor-coupler assembly 
 

 
 
                    Figure 3: 2D dimensioned courier/bed 
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The 2D dimensioned views of the robot’s bed used as 
courier for the colored cubes are shown in Figure 3. 
A tagged 3D robot model is shown in Figure 4. It gives an 
overview of the outlook of the designed robot in Autodesk 
Inventor. 

 
                       Figure 4: Tagged 3D robot model 
 
The robot consists of 2 acrylic layers at its base, 3 layers for 
its front half and a loading and offloading mechanism at its 
rear half. Acrylic was chosen as the fabrication material 
because of the following: 

●​ High impact resistance which is 10 times higher 
than glass. 

●​ It is Lightweight. 
●​ It has excellent dimensional stability. 
●​ Innate weatherability and UV resistance. 
●​ High optical clarity. (Makes it easier to identify 

problems in electrical connections within the body) 
●​ Requires less energy when laser cutting as 

compared to other materials like aluminum. 
●​ Its lower price compared to other durable 

alternatives like metals. 
Laser cutting was chosen as the preferred method of 
manufacturing instead of other methods such as 3D printing 
because of the following advantages: 

●​ Low lead time in fabrication 
●​ High precision  geometries and low tolerances. 

The robot was designed to have a low height and to 
accommodate the heavy components in the lowest layer, 
with the aim of minimizing the height of the centre of mass.  
    Four motor driven wheels were chosen to allow the robot 
to have greater maneuverability and propulsion on uneven 
and unstable surfaces such as gravel and woodchips. The 
downside of using four wheels is that extra developments 
were needed to account for drift of the robot’s odometry 
during turning on the spot using a differential drive system. 
This error necessitated incorporation of an IMU and 
correction algorithms. The implementation of this 
correction system is discussed in depth in the navigation 
system. 
   Once the robot frame design was completed, its electrical 
system was tackled, involving proper component selection 

and integration. Power calculations were performed for 
power supply sizing. The motor selection was informed by 
target robot acceleration.  
   The final robot was estimated to weigh approximately 
4kg. A target maximum acceleration of   was 0. 5𝑚/𝑠2

selected. Given the above two considerations and assuming 
a worst case 50% efficiency, the required motor torque is 
given by: 

, where a is the 𝑇 = 𝑎×𝑚×𝑟
𝑁×η = 0.5×4×0.0425

4×0.5 = 0. 0425 𝑁𝑚
target acceleration, m mass of the robot, r radius of the 
drive wheels and N the count of driven wheels 
A target speed of  is selected. Given the wheel 0. 8𝑚/𝑠
radius, the appropriate motor rotation count is given by: 

, where v is 𝑅𝑃𝑀 = 60𝑣
2×π×𝑟 = 60×0.8

2×π×0.0425 = 179. 751𝑟𝑝𝑚
the target speed, and r is the driven wheel radius.  
 
Typical current draw is calculated with the relation: 

, where T is 𝐼 = 𝑇×ω
𝑉 = 0.0425×2π×179.751÷60

10.5 = 0. 0762𝐴
the required torque, ω is the required angular velocity and V 
is the supply voltage. 
  The motors best matching the requirements above are 
found to be 12V, 200rpm with encoders. 
  The other components that make up the mobile platform 
include: 

●​ DRV8833 -  A Dual H-Bridge Motor Driver with 
1.5 A peak current output per channel and 
under-voltage, over-current, and over-temperature 
protection.  

●​ Hex Coupling - Used for connecting the motor 
shaft to the wheels. 

●​ STM32F4 microcontroller - Used for low-level 
tasks like controlling motors, fetching data from 
encoders and IMU. 

●​ 4 brushed DC motors with quadrature encoders-  
For propulsion. 

●​ MG996R Servo Motor - Used for loading bed 
actuation. 

●​ Lipo battery -  Providing electrical power to the 
system. 

●​ Perforated board  - For mounting and soldering 
electronic components. 

●​ Power Switch - Allows for the isolation of the 
electrical circuit from the power source when the 
robot is not in use. 

●​ Buck converter - Steps down DC voltage from 
battery. 

●​ Japan Solderless Terminals (JST) - Used for 
component connection to the main board. 

●​ Male and female header rows -  Used for modules 
and cable connection. 

●​ Cable ties - For bundling and securing wires and 
electronics. 

●​ Motor mounting brackets - For securing the motors 
to the robot frame 
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Once the components were selected and a circuit made, 
power calculations were applied to determine the correct 
rating of the Lipo battery and verify if the connections were 
safe and functional. 

​ ​ ​ equation ‘I’ 𝑃 = 𝐼𝑉 𝑊𝑎𝑡𝑡𝑠( ) 
Where; ‘P’ is Power in Watts 
​    ‘I’ is Current in Amperes 
​    ‘V’ is Voltage in Volts 

The following chart is the representation of the electrical 
circuit with the current and voltage values of each 
component. Devices operating on the same voltage value 
were connected on the same voltage line and their current 
draws were summed as shown in Figure 5. 

 
               Figure 5: Electrical flow diagram 
Two power sources were used, one for powering the 
Raspberry Pi and the other the motors. It was more 
convenient to use a power bank with a type C cable to 
power the raspberry pi. To determine if the Power Bank was 
capable of providing enough power, the total power drawn 
by the Raspberry Pi and the RPLidar was calculated as 
follows:  
P = (1.5 x 5) + (1 x 5)= 12.5W  
This value is well below the rated value of the power bank. 
The capacity of the power source for the rest of the 
components was determined by calculating the power 
requirements of each device and finding their sum.  
Power from Lipo  Peak power required by (1 Servo motor ≈
and 4 DC motors and encoders) 
P  (2.5 x 6) + 4(1.5 x 10) = 75 W ≈
Therefore the 3S 2200mAh Lipo battery that was chosen 
had a Power rating of 24.4 Wh which can supply the peak 
current required by the system at 11 V. 
   Closed loop control of the motors was achieved by 
implementing the PID (Proportional Integral Derivative) 
control which is made up of the following elements: 

●​ Proportional (P) Coefficient Kp - Its effect 
increases proportionally with magnitude of error. It 
increases responsiveness of the system but cannot 
effectively eliminate steady-state  error. It was 
decided after testing to assign it a value of 200.  

●​ Integral (I) Coefficient Ki - Its effect grows as the 
sum of errors over time increases. It therefore 
controls steady-state error. It was assigned a small 
value of 1, as much larger values increase system 
instability.  

●​ Derivative (D) Coefficient Kd-  Its effect increases 
when rate of change of error increases. It therefore 
controls overshoot by slowing down change as the 
final value is approached This coefficient was set 
to the value 120. 

●​ Scale Ko - It scales the output of the controller by 
a factor. The value found appropriate was 50. 

 
Challenges in Hardware Implementation 

1.​ USB device enumeration failure - attempts to 
program the microcontroller over USB were 
initially unsuccessful. The STM32F4 would not be 
recognized as a USB device by the computer, 
regardless of the Operating System used. It was 
discovered that some Input-Output (IO) pins are 
inappropriate for use with the USB bootloader. The 
USB FS D+ and USB FS D- pins in particular had 
the greatest effect. Figure (i) shows the 
STM32F401 pinout and the affected pins. 

 
Figure (i): STM32F401 pinout with affected pins 
highlighted 
The solution was to move IO devices from those 
pins to unaffected pins.  
 

2.​ Motor jerk when running closed loop motor 
control - open loop motor control performed as 
expected, and reading encoder data alone by 
spinning the motors by hand was okay as well. 
However, activating both motors and encoder 
reading produced erratic behaviour. After 
extensive research and testing, it was discovered 
that motor wire length and shape was the 
contributor. To keep wiring tidy, excess motor and 
encoder cables had been coiled into loops. This 
unintentionally created strong electromagnetic 
coupling between the noisy motor power lines and 
the sensitive encoder signals. The result was EMI 
from inductive, capacitive, and antenna-like 
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effects, which corrupted encoder readings. As a 
workaround, motors had to be driven at a low 
PWM frequency of 500 Hz and lower. The figures 
(ii) and (iii) illustrate the cable management. 

​  

 
​ Figure (i): Wire loops present before. 

 
​ Figure (ii) Wire loops removed. 
​  
After removing the loops and shortening the cables, the 
interference was eliminated, and clean encoder signals were 
maintained even with PWM frequencies above 30 kHz. 
 

2.​ Navigation System 
In the design of the robot navigation system, multiple 
critical steps were covered, including data conversion from 

encoders and IMU, SLAM mapping, and path planning. A 
comprehensive robot navigation system framework to 
realize the navigation capability was designed. This 
framework implemented distributed communication 
through the ROS system, enabling collaboration between 
SLAM mapping and navigation path planning. A high-level 
overview of the system is shown in Figure 6. 

 
                   Figure 6: Navigation System Flow Chart 
 
   In the previous Robotics Dojo competition, encoder data 
was the only source of odometry data for the robot. The 
position of the robot was calculated based on counts of 
wheel rotations and the differential robot motion model. 
This is a simple method for robot localization but it only 
works accurately when the robot’s wheels do not slip. This 
year’s competition features uneven terrain and loose 
surfaces making it increasingly difficult to achieve motion 
without any slip, which throws off the localization. To solve 
this problem, an Inertial Measurement Unit (IMU) was 
introduced to complement the encoders. Data from both 
streams was used together to provide accurate and reliable 
robot localization even with wheel slip. This method of 
using data from more than one sensor for a single purpose is 
known as sensor fusion and it has the following advantages:  

●​ Enhances accuracy of resultant data. 
●​ Increases robustness of the system as it will 

continue functioning even if one sensor fails. 
●​ Provides resilience against intermittent/missing 

data  
  The Extended Kalman Filter (EKF)[2] was used to make 
the system resilient to sensor noise for steady more 
meaningful readings. EKF is a development on the Kalman 
Filter which  allows it to process non-linear functions of a 
system, better suited for real world applications. The basic 
principle of operation of this filter is as illustrated in figure 
7:  
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 Figure 7: Extended Kalman Filter Illustration 

The process represents the system being monitored such as 
a moving body, the measurements stand for the data 
collected from sensors and estimates are the results from the 
filter’s model of the system. From a high-level perspective, 
the algorithm follows a 2-step cycle: (1) Predict, (2) 
Update.  
In the prediction step, the system’s state is projected 
forward using a non-linear motion model, creating the priori 
state estimate. In the update step, incoming sensor 
measurements are compared to the predicted state, and the 
state estimate is corrected to create the posteriori state 
estimate.  
Using the XYZ coordinate frame with Z pointing up from 
the floor, the robot’s state (position and orientation) can be 
described by just 3 values: X position, Y position and Yaw 
angle (rotation angle about the Z axis).  
 
The state estimate is a function of the previous state, the 
previous velocities and some noise term. Mathematically 
stated[3]: 
 

 𝑠𝑡𝑎𝑡𝑒
𝑡
 = 𝑠𝑡𝑎𝑡𝑒

𝑡−1
+ 𝑑𝑡 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠

𝑡−1
+ 𝑛𝑜𝑖𝑠𝑒 

In matrix form, and substituting the differential drive model 
we get: 

 
 provides the current state estimate. 𝑠𝑡𝑎𝑡𝑒

𝑡
Now the predicted sensor measurements is given by[3]: 

 
Where H is the measurement matrix, n is the number of 
sensor measurements at time t, and  is the sensor noise 
term.  
Once the estimated state and predicted sensor 
measurements at current time t are obtained, a weighted 

average is calculated to create an improved current state 
estimate. The successive steps in the EKF algorithm 
automatically determine the appropriate weights.  
 Robot_localization[4] a ROS2 package makes 
implementation of EKF in a project simple. The required 
inputs are the wheel encoder data, the IMU data, process 
noise covariances and velocity commands. The filter is 
applied to all sensor inputs before being combined to obtain 
a single reliable odometry output. The computation is done 
by a node named /ekf_node, which is subscribed to the 
/imu/data and the /diff_cont/odom topics. The node then 
publishes processed odometry data to the /odometry/filtered 
and /tf topics. The former is the current state estimate of the 
robot and the latter is the current transform of the robot base 
link.  
    Other than noise reduction, the EKF robustness against 
gaps in data collection due to, say, sensor interruption. This 
is because the prediction step, which utilizes the differential 
drive robot model, can extrapolate into the future. However, 
prediction for extensive durations leads to error 
accumulation, since sensor data, although noisy, still 
contains some information. This information is crucial for 
correction where predicted data is compared with noisy data 
to obtain a final state estimate that is both accurate and low 
in noise. 
 
Robot navigation was achieved using the ROS2 Nav2 stack 
for path planning and control while slam toolbox was 
employed for SLAM.  
 

3.​ Computer Vision System 
   This section was implemented using the Raspberry Pi 
Camera Module 2 which was the image source. The image 
data collected had the following functions: 

●​ Classification of potato leaves as being healthy, 
having early blight or late blight. 

●​ Coordinated the loading and offloading process 
Classification of potato leaves was achieved using a 
package provided by Robotics Dojo with a trained model. 
The package creates a node subscribed to the /image topic 
and an inference engine whose result is annotated onto the 
source image. The labelled image is then published to the 
/inference_image topic which can be visualized in RVIZ 
under the Image display plugin. 
   The goal for Robotics Dojo was to make loading and 
offloading processes fully automated. The robot would have 
to discriminate loads based on color and deliver the load to 
a bay of matching color. During loading, two LED strips 
were placed in front of the loading bay to give a signal on 
the color of the load the robot has received such as lighting 
the red led strip when the load is of a red color. The robot 
then identifies and saves the led color, proceeds to navigate 
autonomously to the offloading bay and once again uses the 
camera to identify the bay with a matching color as the load 
it is carrying such as offload on the red bay if the load 
carried is red. 
   A simple workflow was implemented using the 
OpenCV[5] module in Python. OpenCV allows detection of 

https://www.codecogs.com/eqnedit.php?latex=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_%7Bt%7D%20%5C%5C%5C%5C%20y_%7Bt%7D%20%5C%5C%5C%5C%20%5Cgamma_%7Bt%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%26%200%20%26%26%200%20%5C%5C%5C%5C%200%20%26%26%201%20%26%26%200%20%5C%5C%5C%5C%200%20%26%26%200%20%26%26%201%20%5Cend%7Bmatrix%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_%7Bt-1%7D%20%5C%5C%5C%5C%20y_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Cgamma_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20%5Ccos(%5Cgamma_%7Bt-1%7D)%20%26%26%200%20%5C%5C%5C%5C%20%5Csin(%5Cgamma_%7Bt-1%7D)%20%26%26%200%20%5C%5C%5C%5C%200%20%26%26%20dt%20%5Cend%7Bmatrix%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20v_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Comega_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20noise_%7Bt-1%7D%20%5C%5C%5C%5C%20noise_%7Bt-1%7D%20%5C%5C%5C%5C%20noise_%7Bt-1%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20y%5E%7B1%7D_%7Bt%7D%20%5C%5C%5C%5C%20y%5E%7B2%7D_%7Bt%7D%20%5C%5C%5C%5C%20.%5C%5C.%5C%5C%5C%5C%20y%5E%7Bn%7D_%7Bt%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20H%5E%7Bt%7D_%7Bnx3%7D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_%7Bt%7D%20%5C%5C%5C%5C%20y_%7Bt%7D%20%5C%5C%5C%5C%20%5Cgamma_%7Bt%7D%20%5Cend%7Bmatrix%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20%5Comega_%7B1%7D%20%5C%5C%5C%5C%20%5Comega_%7B2%7D%20%5C%5C.%5C%5C.%5C%5C%5C%5C%20%5Comega_%7Bn%7D%20%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Comega#0
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entities in an image such as color, shapes, faces and many 
more. The camera was run continuously to fetch real-time 
images. Using the Real-Time Streaming Protocol (RTSP), 
the images were sent over IP from the Raspberry Pi to the 
main computer for processing. This was adopted to relieve 
the raspberry pi off the heavy inference processing duties. 
The algorithm running on the main computer for simple 
real-time color detection was as follows: 

1.​ An image is fetched from the RTSP stream and 
saved to memory 

2.​ The image is converted from BGR to HSV color 
spaces 

3.​ Color ranges in HSV format are defined 
4.​ Using the color ranges, a mask is created for each 

color 
5.​ The mask is dilated (a morphological transform) to 

reduce effects of image noise 
6.​ Contours in the masked image are identified 
7.​ Bounding rectangles corresponding to the contours 

are drawn on the image for tracking 
8.​ Bounding rectangles are counted 
9.​ Text is affixed for each bounding rectangle 
10.​ The color with the largest count of bounding 

rectangles is published to a ROS topic 
/detected_color 

Simple conditional checks were created to check for 
specific sequences in detected color. Servo actuation would 
be done only if a color was detected for 2 consecutive 
detection events after a time interval.  
​ Challenges in Implementing Color Detection 
An initial implementation of the algorithm had step 8 
identify the largest contour by area. While initially 
promising it failed when the target color did not cover the 
full Field-of-View of the camera. The simple algorithm 
would, for instance, identify the color of the frame of the 
screen as well as the color shown on the screen itself. Of 
course this gave erroneous results that broke the algorithm 
downstream. However, it was noticed that for a given target 
color, many contours would be identified within the frame, 
along with one large contour for the frame on the screen. 
The team decided to shift strategy to counting bounding 
boxes, rather than ranking them based on area.  

IV.​ EXPERIMENTAL RESULTS 
The performance of the robot was tested and assessed in 

the following areas: 
●​ Quality of map produced. 
●​ Accuracy of colour detection. 
●​ Coordination of the courier offloading based on 

image data. 
   The quality of the map produced was greatly dependent 
on the source of odometry data. A comparison was made on 
the maps obtained by using encoder data only and when 
using sensor fusion to combine encoder and IMU data. Two 
simple tests were done in simulation: 

1.​ Turning in place 90 degrees clockwise from the 
initial position 

2.​ Driving around a complete loop from the initial 
position 

 
Figures 8 and 9 show the initial position of the robot at 
launch of SLAM . 

 
Figure 8: Virtual robot initial position 

 

 
​ Figure 9: Rviz visualization at initial position 
 
Figure 10 shows the result of turning in place without fused 
odometry. 
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​ Figure 10: In-place turning without fused 
odometry 
 
Figure 11 shows the result of turning in place with fused 
odometry 
 

 
​ Figure 11: In-place turning with fused odometry 
 
Figure 12 shows the generated map without fused 
odometry. 

 
​ Figure 12: Map without fused odometry 
 
Figure 13 shows the generated map with fused odometry. 

 
​ Figure 13: Map with fused odometry 
 
Figure 14 shows the generated map without fused odometry 
with a modified driving style 
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​ Figure 14: Map without fused odometry with 
modified driving style 
 
It is quite clear from figures 10 and 11 that sensor fusion 
performs considerably better than odometry with wheel 
encoders alone. There still exists some translational drift in 
laser scan in figure 11 however in practice this is easier to 
compensate for than rotational drift. Figures 12 and 13 
illustrate that EKF is indispensable as the map without 
fused odometry is unusable, and further cement the 
difference in significance between translational and 
rotational drift. An interesting finding shown in figure 14 
was that the driving style also played a role. To obtain that 
result, in-place turning was avoided completely, instead 
opting to combine some linear velocity with all angular 
velocity. However, the alignment of the laser frame was still 
compromised at the tail end of the run when restoring the 
robot’s orientation. This proves that although it is possible 
to map accurately without IMU data, it is not dependable, 
especially since autonomous robot navigation extensively 
uses in-place turning to clear up laser scan drift.  
 
The results from the real robot closely resembled those 
obtained from simulation.  
 
   The Courier was designed to offload only when the robot 
had arrived at the offloading bay that was colored to match 
the color of the object loaded on the robot. OpenCV was 
used as a tool to classify image data into a specific range of 
colors such as red or blue. Additional functionality was 
added to this image controlled loading and offloading 
process to ensure that it functions as designed. OpenCV 
allows one to write a python script that displays an image 
from the pi camera with labelled rectangular contours 
encircling an identified image such as a color or an object.  

Two methods of color identification were implemented and 
compared. The first was selecting the largest contour by 
area and publishing the identified color as the label of the 
contour and the second was selecting the label with the 
most contours and publishing the label as the identified 
color. The described methods are illustrated in the following 
image: 

 
From the image, it is observed that the red contours are two 
in number while the blue contours are three in number 
while the largest contour by area is the red contour, only if 
the larger red contour in the background is ignored. 
   As discussed in the Vehicle Design section, the latter 
method was chosen because of the following reasons: 

●​ It was less prone to error. The first method could 
identify a contour larger than the object being 
observed in the background and send the wrong 
data. The second method would rely on contour 
concentration, such as an led, and send the led 
color as the correct color of the image. 

●​ It was more reliable. An object with a consistent 
and bright color will trigger the correct color 
identification without being affected by 
background color identifications that may not have 
high intensity. 
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VII.​ APPENDIX–SITUATIONAL AWARENESS 
A significant challenge in adoption of unmanned systems 

is user trust. Many applications to which robots may be of 
great benefit remain unautomated simply because of lack of 
trust. This highlights the need for communication between 
the designer and the ultimate consumer of the system. 
Therefore to bridge that gap, this team would do the 
following: 

●​ Inform the user that the system is autonomous, 

what autonomy means and what they should 
expect.  

●​ Explain the most relevant constituents of the 
system, especially components visible to the user.  

●​ Communicate what the robot is designed to do, 
and what role the user plays in its successful 
operation.  

●​ Discuss common misconceptions and Frequently 
Asked Questions about what the robot can and 
can’t do. 

●​ Cite internal and/or external testing and validation 
data that shows the product can complete the task, 
also listing confidence levels and uncertainties.  

●​ List fault conditions, how to identify them, and 
resolve them if possible. 

●​ Communicate that corner cases do exist and may 
not be accounted for.  

●​ Emphasize that the robot is not sentient or innately 
malicious.  
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