
Development of Autonomous Mobile Robot
for Robotics Dojo 2025 Competition

Victoria Rotich, Maryanne Mutwa, Ruth Olumo, Susan Kimani, Caleb Wambua, Fiona Opiyo, Joshua Njau

 (The Obsidian Order)

Abstract - This paper presents the design and
implementation process of the Obsidian Order team for
a mobile robot to be used in the Robotics Dojo 2025
Competition. It contains the chief considerations used in
the design process and the successes, challenges and
solutions that were present along the development of the
mobile robot.

Key words - robotics, ROS2, Raspberry Pi, map,
detection, autonomous

I.​ Introduction

Robotics Dojo Competition is an annual competition
that challenges students to build fully autonomous
mobile robots capable of navigation through a game
field and execution of given tasks within the game
field.

The 2025 competition presented challenges such as
climbing and descending ramps, moving through
different terrain which included grass, gravel, and
sawdust, a dynamic barrier, real-time detection of
plant disease using a camera, and loading and
offloading a cube within the gamefield.

This paper describes the process taken by The
Obsidian Order in developing a mobile robot to solve
the challenges presented by the Robotics Dojo
Competition 2025.

II.​ Design Strategy

A.​ Core Approach

The design approach used to solve the competition
was to build a mobile robot that was robust enough to
ease through the challenge while still maintaining
simplicity in order to avoid hitches that arise from
overcomplication.

CAD tools specifically OnShape, Inventor and
Fusion were used for rapid visualisation, and

prototyping was done through 3D printing in order to
come up with the optimal design.

Figure 1: CAD design of the robot

B.​ Game Field Considerations

The different parts of the game field were thoroughly
considered while coming up with the design, and
informed the type of components that were used.

This includes:

●​ Terrain. In light of the terrain, large wheels
were selected to be able to coast through
them. A four-wheel drive system was also
favoured as sending power to all four wheels
would reduce the chances of getting stuck
within the terrain.

●​ Ascending and descending ramps. The
presence of the ramps magnified the
importance of having a balanced weight
distribution. This was so as to keep the
resultant weight component of the robot
always within the base of the robot,
minimising the amount of effort needed to
climb the ascending ramp and maintaining

control on the speed of going down the
descending ramp.

●​ Cube dimensions. The dimensions of the
cube that was to be loaded onto the robot
greatly dictated the size of the boot
mechanism that was designed.

C.​ Cost Considerations

The cost of components was also a key consideration
in coming up with the design. A balance had to be
struck between high-quality but pricey components
and cheap but low-quality components in order to
both stay within the budget and not compromise on
the reliability of the mobile robot.

D.​ Time Constraints

Due to the time allocated for the development of the
robot, priority was given to rigorous and iterative
testing as opposed to addition of functionality to the
robot.

III.​ Vehicle Design

The mobile robot composed of the following
components:

●​ Raspberry Pi
●​ Raspberry Pi camera
●​ LiDAR
●​ Power System
●​ Motors and Wheels
●​ Motor Driver
●​ Arduino Mega
●​ Joystick
●​ Frame
●​ Boot
●​ Software

A.​ Raspberry Pi

The Raspberry Pi used is the Raspberry Pi 4 Model B
with 4GB of RAM. The Raspberry Pi has 40 General
Purpose Input/Output pins (GPIO pins), 2 USB 2.0

ports, 2 USB 3.0 USB ports, 1 ethernet port, and a
microSD card slot.

It is booted by a 32GB memory card loaded with
Ubuntu Server 22.04.5 LTS and Robot Operating
System 2 (ROS2), which is what is used to control
and run the robot.

Figure 2: Raspberry Pi 4 Model B

It is powered by a 5V output.

The Raspberry Pi is the main brain of the robot.

B.​ Raspberry Pi Camera

The Raspberry Pi Camera Module V2 is used. It has
an 8-megapixel sensor and can support up to 1080p
video mode.

It attaches via a ribbon to the CSI port of the
Raspberry Pi.

It is used for detection and classification of plant
disease.

Figure 3: Pi Camera Module 2

C.​ LiDAR

The LiDAR used in this robot is the RPLiDAR A1. It
has a range of 0.15 – 12m, a sample rate of 2000Hz
and a scan rate of 5.5Hz.

It is connected via USB to the Raspberry Pi.

The LiDAR serves to scan the game field and, in
conjunction with the encoders of the motors, create a
map through a process called Simultaneous
Localisation and Mapping (SLAM).

Figure 4: RPLidar A1

D.​ Power System

A 12V Li-Po battery and a power bank are used to
supply power to the robot.

The Li-Po battery sends power to the motors and
motor driver. It sends the full 12V to the motors, and
is also connected to a buck converter that drops the
voltage down to 5V, which is then sent to the motor
driver.

Figure 5: Lipo Battery

The power bank powers the Raspberry Pi, which
consequently powers the LiDAR, Raspberry Pi
camera and the Arduino Mega.

Figure 6: Power Bank

E.​ Motors

2 JGB37-520 12V 110RPM motors are used. They
have a maximum torque of 10KG.CM and a power
rating of 7 – 15W. They are connected to an encoder.

The motors receive directional and velocity
commands from the motor driver and execute them.
Data concerning the revolution of the motors is
collected by the encoder and sent to the motor driver.

Wheels used were the off-road 85 by 38mm type,
chosen as they would be the wheels most capable of
navigating through the terrain.

Figure 7 DC Motor with Encoder

F.​ Motor Driver

The L298N Dual H-Bridge Motor Driver is used.

It is powered by a 5V input. It also receives 12V
which it sends to the motors along with enable
signals.

The L298N Dual H-Bridge Motor Driver is used to
control the speed and direction of the motors, and
receives data from the motor encoders.

Figure 8: Motor Driver

G.​ Belt System

A belt system is set up to transfer the torque of the 2
motors to the 4 wheels, effectively making it a
four-wheel drive system.

H.​ Arduino Mega

An Arduino Mega 2560 is used. It has 54 digital
input/output pins, 16 analogue input pins, and a USB
connection. It is connected to the Raspberry Pi
through a USB port.

The Arduino Mega is an intermediary between the
Raspberry Pi and the motor driver. It receives
commands from the former and sends them to the
motor driver, and receives encoder data from the
motor driver and sends it to the Raspberry Pi.

Figure 9: Arduino Mega

I.​ Joystick

A joystick is used to control the movement of the
robot while it is performing SLAM.

The joystick is connected to a host computer through
Bluetooth.

J.​ Frame

The frame of the robot was fabricated through 3D
printing.

Figure 10: Mobile Robot

K.​ Boot (Unloading) Mechanism

The unloading boot is a detachable, funnel-shaped
receptacle mounted at the rear of the robot chassis.

Figure 11: CAD design with boot at the rear of the robot chassis​

TABLE 1: BOOT DIMENSIONS

Feature Dimension

Top rectangular
opening

15cm by 11.8cm

Internal drop chute 5.8cm by 5.8cm by 5cm

Cube size
(competition spec)

3cm by 3cm by 3cm

●​ The wide top lip ensures that a cube released
from the loading station is captured even if
the robot is a few centimetres off-center.​

●​ The tapered funnel guides the cube toward a
rectangular trapdoor at the base.

The trapdoor is a 3D printed 3mm thick sheet and
hinged on a servo bracket.

The boot mechanism is powered and controlled
entirely by the Raspberry Pi. The MG996R servo
motor is wired directly to the Raspberry Pi, taking 5
volts and ground from the board while its signal line
connects to GPIO 18, which can output the precise
PWM pulses the servo needs. The servo is mounted
beneath the detachable funnel-shaped boot at the
back of the robot. A flat rectangular trapdoor, sized to
hold the 3 cm cube, is fixed to the servo horn so that
rotating the servo swings the door open and closed.

Control is handled by a ROS 2 node that uses the
pigpio library to generate the PWM signals for the

servo. When the node starts it positions the servo at
about 100 degrees so the trapdoor remains closed.
The same node subscribes to the /joy topic, which
carries button data from the paired PS3 controller.

Figure 12: PS3 (joystick) controller

Each time the square button on the joystick is
pressed, the node receives the message and
commands the servo to rotate to an open position,
holds it there briefly, and then returns it to the
original 100-degree angle to re-seal the boot. In
manual testing this allows a simple press of the
square button to release the cube.

For the autonomous round, the same node is launched
alongside the navigation and perception nodes.
Instead of a human pressing the button, the
higher-level mission controller sends the equivalent
trigger at the unloading station after color detection
and navigation have confirmed the correct drop-off
point. The servo then follows the same
open–pause–close motion, ensuring the cube is
reliably released without any manual input while
drawing all its power and control signals directly
from the Raspberry Pi.

L.​ Software

The robot’s software was built on ROS2.

Launch files were built for the LiDAR, Raspberry Pi
Camera, SLAM, joystick, teleoperation, robot state
publisher etc.

Control files were built for ROS2 control of the
motor, the joystick, mapping, simulation etc.

A simplified Unified Robot Description Format
(URDF) file for the robot was also created for
simulation and use in mapping and autonomous
navigation.

Figure 13: Hardware Structure of Mobile Robot

IV.​ Experimental Results

1.​ Unit Tests

Unit tests were carried out for the following
functionalities:

●​ Movement of the robot
●​ Generation of scan by the LiDAR
●​ Opening and closing of the boot mechanism
●​ Colour detection by the Raspberry Pi

Camera.
●​ Plant disease detection by the Raspberry Pi

Camera.

a.​ Movement of Robot

After assembly, the robot’s linear motion was tested.
This was through creating a node that would send
/cmdvel instructions to the Arduino Mega via serial.
The instruction contained an RPM and directional
components to it. The Arduino would then interpret
the command and send the appropriate signal to the
motors.

On testing linear movement the robot kept turning
left, meaning that the right motor, despite getting the

same pulse width modulation (PWM) signal as the
left motor, was rotating faster. It was, therefore,
necessary to create a proportional integral differential
(PID) controller.

The PID controller was implemented on the Arduino
Code. Error was calculated by subtracting the target
number of ticks per frame from the actual value of
ticks per frame. For the robot to move in a straight
line, the following were the constants that were
empirically arrived on: kp = 50, ki = 5, kd = 1.

Initial testing was done using the ROS2 teleoperation
package that ran and controlled on the host computer.
The joy stick was eventually set up to give the
/cmdvel instructions and thus control the robot.

b.​ Generation of scan by LiDAR

The LiDAR was set up by connecting it to the
Raspberry Pi through a micro USB cable. A
repository by SLAMTec, the company that
manufactures the RPLiDAR A1, was cloned into the
Raspberry Pi. The LiDAR was then launched using
its respective launch file, and generated a 2D scan of
the environs, which was visualised on RViz.

Figure 14: LiDAR laser scans visualized in Rviz

Occasionally, the LiDAR would fail to launch. On
troubleshooting, it was discovered that the LiDAR
was not receiving enough power from the Raspberry
Pi. This arose due to the fact that the initial setup had
the same Li-Po battery powering every single
component of the robot. The issue was initially
solved by slightly increasing the voltage sent to the
Raspberry Pi from 5V to 5.7V. However, it was
eventually agreed upon to use a powerbank instead to

power the Raspberry Pi, which supplied sufficient
power for the Raspberry Pi and all connected devices.

c.​ Opening and closing of boot mechanism

The boot mechanism was unit-tested by sending test
/joy messages and verifying that the servo opened to
release a cube and then returned to the closed
position

Figure 15: Boot mechanism unloading the cube

d.​ Colour detection by Raspberry Pi Camera

The colour detection system serves the critical
function of identifying the colour of cubes placed on
the robot's loading mechanism by analyzing the LED
illumination displayed in the loading area. This
capability is essential for the robot's autonomous
decision-making process, as it determines whether to
deposit the cube in the blue or orange zone during the
final unloading phase.

The system operates using a Raspberry Pi Camera
Module v2 mounted on the robot, which captures
real-time video feed of the loading area where cubes
are dispensed with coloured LED indicators.

The colour detection node operates as a ROS 2
package that continuously monitors the camera feed
and employs computer vision algorithms to detect
and classify colours.

When a cube is loaded onto the robot, the system
analyzes the predominant colour visible in the
camera's field of view using OpenCV (cv2) for image
processing. The algorithm converts the captured BGR
images to HSV colour space, which provides better
colour segmentation consistency under varying
lighting conditions compared to standard RGB.

 The system creates binary masks for specific colour
ranges—primarily focusing on blue and orange
detection—by applying threshold values that define
the lower and upper bounds of each target colour in
the HSV spectrum.

The detection process involves calculating the
percentage of pixels falling within the predefined
colour ranges for both blue and orange. The system
compares the relative proportions of detected blue
versus orange pixels against a confidence threshold to
determine the dominant colour. This approach
ensures reliable classification even when
environmental lighting conditions fluctuate during
competition. The node publishes two main output
topics: one indicating the detected colour as a string
value ("blue", "orange", or "none") and another
providing a confidence score between 0.0 and 1.0
representing the certainty of the classification.

Figure 16: Detecting color blue in an image

This colour detection node is functionally dependent
on several other system components. It requires the
camera driver node to provide a stable image feed
through the /camera/image_raw topic. The system
interfaces with the task coordinator node, which
triggers colour detection at the appropriate moment
using a service during the loading sequence and
utilizes the colour classification results to make
navigation decisions. The node interacts with the
navigation system to determine the correct deposit
zone based on the identified cube colour.

e.​ Plant disease detection by Raspberry Pi
Camera​

The potato disease detection subsystem was designed
as a modular vision pipeline built around the
Raspberry Pi camera and implemented in ROS 2. The
main objective was to acquire a continuous image
stream from the camera, process the frames through
machine learning, and provide disease classification
results in real time or on demand. The architecture
emphasizes modularity, low computational overhead,
and flexibility, allowing smooth integration into the
broader robotics framework for competition tasks.

Initially, a custom model was trained using
TensorFlow, focusing on distinguishing between
healthy and unhealthy potato leaves. However, as
development progressed, a more complete
PyTorch-based model was provided, trained to
classify three classes: Early Blight, Late Blight, and
Healthy. To align with this improved model, it was
decided upon to integrate it into our pipeline instead
of continuing with the TensorFlow approach. This
ensured consistency, allowed more accurate
classification, and streamlined the system design.

Figure 17: Potato Plant disease detection model detecting a
healthy plant

The system consists of four key ROS 2 components:

●​ Headless Camera Node – acquires and
publishes images, provides image saving
service.​

●​ Potato Disease Detection Node – subscribes
to camera feed, performs inference,
publishes results.​

●​ Inference Engine – wraps a fine-tuned
ResNet-18 model for disease classification.​

●​ Service Node – provides on-demand,
averaged predictions for stable outputs.

Detailed Description of the Nodes

Headless Camera Node​
This node is responsible for live image acquisition
from the Raspberry Pi camera. Captured frames are
converted into ROS‐compatible sensor_msgs/Image
messages and published on the /camera/image_raw
topic. It runs in a lightweight, headless mode without
GUI dependencies to minimize resource usage on the
embedded platform.​
Additionally, the node offers a ROS service
(/save_image) that allows an external request to
capture and save the current frame with a timestamp.
This function is useful both for dataset generation and
for verifying the camera pipeline during testing.

Potato Disease Detection Node​
The detection node, implemented within the package
rdj2025_potato_disease_detection, subscribes to the
incoming image topic. Frames are converted from
ROS → OpenCV → PIL format to prepare them for
inference. The node then passes the images to the
inference engine and publishes the classification
result as a std_msgs/String message on the
/inference_result topic.​
This node therefore serves as the bridge between raw
visual data and decision-level output, making results
available to other modules in the system.

Inference Engine​
The inference engine is defined in a dedicated
module (inference_engine.py). It encapsulates the
trained machine learning model and its preprocessing
pipeline. Specifically, a ResNet-18 architecture is
employed, with its final fully connected layer
modified to handle three target classes. Pretrained
weights were fine-tuned for potato leaf disease
classification, and the model is loaded at runtime
from stored .pth weights.​
Input images are preprocessed using resizing,
cropping, and normalization before inference. The
engine supports both CPU and GPU execution,
automatically selecting GPU if available. The output

is the predicted disease label (Early Blight, Late
Blight, or Healthy).

Service Node​
In order to balance continuous live feed availability
with efficient inference, an additional service node
was introduced. This node subscribes to the headless
camera stream but only processes frames on request.
When called, it captures three consecutive frames,
performs inference on each, and averages the results
to output a single classification response.​
This design reduces the redundancy of running
inference on every frame (~0.1 s intervals), lowers
computational load on the Raspberry Pi, and
improves robustness by mitigating noise from motion
or lighting variations.

Figure 18: Screenshot of a terminal during a service call.

Several challenges arose during implementation.
First, running inference continuously on every frame
led to high system load and repetitive outputs. The
service-based approach was introduced to address
this limitation, but additional optimization of model
deployment (e.g., quantization or pruning) may
further improve efficiency.​
Another difficulty was with visualization: although
inference results are accessible as ROS messages,
overlaying predictions directly on images in real time
proved problematic due to GUI compatibility issues
on the headless Raspberry Pi setup. Future work will
explore lightweight visualization tools or web-based

dashboards to display annotated outputs.​
Model performance varied across test conditions.
While the current ResNet-18 achieves reasonable
accuracy, retraining or fine-tuning with additional
potato leaf datasets may be necessary to improve
reliability under field conditions.

2.​ Integration Tests

Integration tests were carried out for the following
functionalities:

●​ Generation of map
●​ Autonomous navigation of the robot

a.​ Generation of map

The prerequisites to generating a good map are:

●​ A working URDF with correct transforms.
●​ LiDAR scans publishing to /scan topic
●​ Wheel encoder odometry publishing to

/odom topic.
●​ SLAM launch file.
●​ Teleoperation for moving the robot around.

After getting the requirements a map was generated
by moving the robot around with the joystick in
space. SLAM worked properly, but there were some
small distortions in the map generated due difficulties
that arose from the use of a four-wheel drive system.

Figure 19: Map generated from the gamefield

Parameters were adjusted to solve the issue by setting
up the robot to chiefly depend on laser scan from the
LiDAR in order to rectify itself when the odometry of
the URDF were off. This caused a significant
improvement in the map generated.

b.​ Autonomous navigation of the robot

For autonomous navigation, the main prerequisites
were:

●​ A previously generated and saved map.
●​ Adaptive Monte Carlo Localisation (AMCL)

for localization on the map.
●​ The Nav2 stack with planner, controller, and

recovery behaviors.
●​ Correct transforms in the URDF.​

Once the map was ready, we placed the robot in the
mapped space, launched AMCL for localization, and
started Nav2. Using RViz, we set different goal poses
for the robot. The robot was able to localize itself and
move towards the goals on its own.

There were a few deviations in the path, mostly due
to the four-wheel drive setup and small differences in
the motors, but overall the navigation worked as
expected. The robot combined localization, planning,
and motion control into a working pipeline that
allowed it to move without any manual control.

V.​ Acknowledgement

The Obsidian Order team would wish to
acknowledge the invaluable help and support offered
by Mr. Lenny Ng’ang’a and Mr. Billy Isaac
throughout the design, fabrication and testing of the
mobile robot.

VI.​ References

[1] Raspberry Pi Foundation, "Raspberry Pi Camera
Module 2," Raspberry Pi Documentation, 2023.
[Online]. Available:
https://www.raspberrypi.com/documentation/accessor
ies/camera.html

[2] OpenCV Foundation. OpenCV Documentation.
[Online]. Available: https://docs.opencv.org/4.x/

[3] G. Bradski and A. Kaehler, Learning OpenCV:
Computer Vision with the OpenCV Library. O'Reilly
Media, 2008.

[4] Open Robotics. ROS 2 Humble Hawksbill
Documentation. [Online]. Available:
https://docs.ros.org/en/humble/

[5] S. Macenski, T. Foote, B. Gerkey, C. Lalancette,
and W. Woodall, "Robot Operating System 2: Design,
architecture, and uses in the wild," Science Robotics,
vol. 7, no. 66, May 2022. DOI:
10.1126/scirobotics.abm6074

[6] Raspberry Pi Foundation. Raspberry Pi OS
Documentation. [Online]. Available:
https://www.raspberrypi.com/documentation/compute
rs/os.html

[7] Slamtec. 2019. RPLIDAR 360 Degree Laser
Range Scanner Interface Protocol and Application
Notes. Shanghain Slamtec. Co.

[8] A. N. Meena and M. Pradhan, “Potato leaf disease
detection using deep learning,” in 2020 International
Conference on Communication and Signal
Processing (ICCSP), Chennai, India, 2020, pp.
1229–1233.

https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/documentation/accessories/camera.html
https://docs.opencv.org/4.x/
https://docs.ros.org/en/humble/
https://www.raspberrypi.com/documentation/computers/os.html
https://www.raspberrypi.com/documentation/computers/os.html

	I.​Introduction
	II.​Design Strategy
	A.​Core Approach
	B.​Game Field Considerations
	C.​Cost Considerations
	D.​Time Constraints

	III.​Vehicle Design
	A.​Raspberry Pi
	B.​Raspberry Pi Camera
	C.​LiDAR
	D.​Power System
	E.​Motors
	F.​Motor Driver
	G.​Belt System
	H.​Arduino Mega
	I.​Joystick
	J.​Frame
	K.​Boot (Unloading) Mechanism
	
	L.​Software

	
	IV.​Experimental Results
	1.​Unit Tests
	a.​Movement of Robot
	b.​Generation of scan by LiDAR
	c.​Opening and closing of boot mechanism
	d.​Colour detection by Raspberry Pi Camera
	e.​Plant disease detection by Raspberry Pi Camera​

	2.​Integration Tests
	a.​Generation of map
	b.​Autonomous navigation of the robot

	V.​Acknowledgement
	VI.​References

