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Abstract - This paper presents the design and 
implementation process of the Obsidian Order team for 
a mobile robot to be used in the Robotics Dojo 2025 
Competition. It contains the chief considerations used in 
the design process and the successes, challenges and 
solutions that were present along the development of the 
mobile robot. 
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I.​ Introduction 

Robotics Dojo Competition is an annual competition 
that challenges students to build fully autonomous 
mobile robots capable of navigation through a game 
field and execution of given tasks within the game 
field. 

The 2025 competition presented challenges such as 
climbing and descending ramps, moving through 
different terrain which included grass, gravel, and 
sawdust, a dynamic barrier, real-time detection of 
plant disease using a camera, and loading and 
offloading a cube within the gamefield. 

This paper describes the process taken by The 
Obsidian Order in developing a mobile robot to solve 
the challenges presented by the Robotics Dojo 
Competition 2025. 

II.​ Design Strategy 

A.​ Core Approach 

The design approach used to solve the competition 
was to build a mobile robot that was robust enough to 
ease through the challenge while still maintaining 
simplicity in order to avoid hitches that arise from 
overcomplication. 

CAD tools specifically OnShape, Inventor and 
Fusion were used for rapid visualisation, and 

prototyping was done through 3D printing in order to 
come up with the optimal design. 

 

Figure 1: CAD design of the robot 

B.​ Game Field Considerations 

The different parts of the game field were thoroughly 
considered while coming up with the design, and 
informed the type of components that were used. 

This includes: 

●​  Terrain. In light of the terrain, large wheels 
were selected to be able to coast through 
them. A four-wheel drive system was also 
favoured as sending power to all four wheels 
would reduce the chances of getting stuck 
within the terrain. 

●​ Ascending and descending ramps. The 
presence of the ramps magnified the 
importance of having a balanced weight 
distribution. This was so as to keep the 
resultant weight component of the robot 
always within the base of the robot, 
minimising the amount of effort needed to 
climb the ascending ramp and maintaining 



control on the speed of going down the 
descending ramp. 

●​ Cube dimensions. The dimensions of the 
cube that was to be loaded onto the robot 
greatly dictated the size of the boot 
mechanism that was designed. 

 

C.​ Cost Considerations 

The cost of components was also a key consideration 
in coming up with the design. A balance had to be 
struck between high-quality but pricey components 
and cheap but low-quality components in order to 
both stay within the budget and not compromise on 
the reliability of the mobile robot. 

D.​ Time Constraints 

Due to the time allocated for the development of the 
robot, priority was given to rigorous and iterative 
testing as opposed to addition of functionality to the 
robot. 

III.​ Vehicle Design 

The mobile robot composed of the following 
components: 

●​ Raspberry Pi 
●​ Raspberry Pi camera 
●​ LiDAR 
●​ Power System 
●​ Motors and Wheels 
●​ Motor Driver 
●​ Arduino Mega 
●​ Joystick 
●​ Frame 
●​ Boot 
●​ Software 

 

A.​ Raspberry Pi 

The Raspberry Pi used is the Raspberry Pi 4 Model B 
with 4GB of RAM. The Raspberry Pi has 40 General 
Purpose Input/Output pins (GPIO pins), 2 USB 2.0 

ports, 2 USB 3.0 USB ports, 1 ethernet port, and a 
microSD card slot. 

It is booted by a 32GB memory card loaded with 
Ubuntu Server 22.04.5 LTS and Robot Operating 
System 2 (ROS2), which is what is used to control 
and run the robot. 

 

Figure 2: Raspberry Pi 4 Model B 

It is powered by a 5V output. 

The Raspberry Pi is the main brain of the robot. 

B.​ Raspberry Pi Camera 

The Raspberry Pi Camera Module V2 is used. It has 
an 8-megapixel sensor and can support up to 1080p 
video mode. 

It attaches via a ribbon to the CSI port of the 
Raspberry Pi. 

It is used for detection and classification of plant 
disease. 

 

Figure 3: Pi Camera Module 2 



C.​ LiDAR 

The LiDAR used in this robot is the RPLiDAR A1. It 
has a range of 0.15 – 12m, a sample rate of 2000Hz 
and a scan rate of 5.5Hz. 

It is connected via USB to the Raspberry Pi. 

The LiDAR serves to scan the game field and, in 
conjunction with the encoders of the motors, create a 
map through a process called Simultaneous 
Localisation and Mapping (SLAM). 

 

Figure 4: RPLidar A1 

D.​ Power System 

A 12V Li-Po battery and a power bank are used to 
supply power to the robot. 

The Li-Po battery sends power to the motors and 
motor driver. It sends the full 12V to the motors, and 
is also connected to a buck converter that drops the 
voltage down to 5V, which is then sent to the motor 
driver. 

 

Figure 5: Lipo Battery  

The power bank powers the Raspberry Pi, which 
consequently powers the LiDAR, Raspberry Pi 
camera and the Arduino Mega. 

 

Figure 6: Power Bank 

E.​ Motors 

2 JGB37-520 12V 110RPM motors are used. They 
have a maximum torque of 10KG.CM and a power 
rating of 7 – 15W. They are connected to an encoder. 

The motors receive directional and velocity 
commands from the motor driver and execute them. 
Data concerning the revolution of the motors is 
collected by the encoder and sent to the motor driver. 

Wheels used were the off-road 85 by 38mm type, 
chosen as they would be the wheels most capable of 
navigating through the terrain. 

 

 

Figure 7 DC Motor with Encoder 



F.​ Motor Driver 

The L298N Dual H-Bridge Motor Driver is used. 

It is powered by a 5V input. It also receives 12V 
which it sends to the motors along with enable 
signals. 

The L298N Dual H-Bridge Motor Driver is used to 
control the speed and direction of the motors, and 
receives data from the motor encoders. 

 

Figure 8: Motor Driver 

G.​ Belt System 

A belt system is set up to transfer the torque of the 2 
motors to the 4 wheels, effectively making it a 
four-wheel drive system. 

 

H.​ Arduino Mega 

An Arduino Mega 2560 is used. It has 54 digital 
input/output pins, 16 analogue input pins, and a USB 
connection. It is connected to the Raspberry Pi 
through a USB port. 

The Arduino Mega is an intermediary between the 
Raspberry Pi and the motor driver. It receives 
commands from the former and sends them to the 
motor driver, and receives encoder data from the 
motor driver and sends it to the Raspberry Pi. 

 

Figure 9: Arduino Mega 

I.​ Joystick 

A joystick is used to control the movement of the 
robot while it is performing SLAM. 

The joystick is connected to a host computer through 
Bluetooth. 

J.​ Frame 

The frame of the robot was fabricated through 3D 
printing. 

 

Figure 10: Mobile Robot 

K.​ Boot (Unloading)  Mechanism 

The unloading boot is a detachable, funnel-shaped 
receptacle mounted at the rear of the robot chassis. 



 

Figure 11: CAD design with boot at the rear of the robot chassis​
 

TABLE 1: BOOT DIMENSIONS 

Feature Dimension 

Top rectangular 
opening 

15cm by 11.8cm 

Internal drop chute 5.8cm by 5.8cm by 5cm 

Cube size 
(competition spec) 

3cm by 3cm by 3cm 

 

●​ The wide top lip ensures that a cube released 
from the loading station is captured even if 
the robot is a few centimetres off-center.​
 

●​ The tapered funnel guides the cube toward a 
rectangular trapdoor at the base. 

The trapdoor is a 3D printed 3mm thick  sheet and 
hinged on a servo bracket. 

The boot mechanism is powered and controlled 
entirely by the Raspberry Pi. The MG996R servo 
motor is wired directly to the Raspberry Pi, taking 5 
volts and ground from the board while its signal line 
connects to GPIO 18, which can output the precise 
PWM pulses the servo needs. The servo is mounted 
beneath the detachable funnel-shaped boot at the 
back of the robot. A flat rectangular trapdoor, sized to 
hold the 3 cm cube, is fixed to the servo horn so that 
rotating the servo swings the door open and closed. 

Control is handled by a ROS 2 node that uses the 
pigpio library to generate the PWM signals for the 

servo. When the node starts it positions the servo at 
about 100 degrees so the trapdoor remains closed. 
The same node subscribes to the /joy topic, which 
carries button data from the paired PS3 controller.  

 

Figure 12: PS3 (joystick) controller 

Each time the square button on the joystick is 
pressed, the node receives the message and 
commands the servo to rotate to an open position, 
holds it there briefly, and then returns it to the 
original 100-degree angle to re-seal the boot. In 
manual testing this allows a simple press of the 
square button to release the cube. 

For the autonomous round, the same node is launched 
alongside the navigation and perception nodes. 
Instead of a human pressing the button, the 
higher-level mission controller sends the equivalent 
trigger at the unloading station after color detection 
and navigation have confirmed the correct drop-off 
point. The servo then follows the same 
open–pause–close motion, ensuring the cube is 
reliably released without any manual input while 
drawing all its power and control signals directly 
from the Raspberry Pi. 

L.​ Software 

The robot’s software was built on ROS2. 

Launch files were built for the LiDAR, Raspberry Pi 
Camera, SLAM, joystick, teleoperation, robot state 
publisher etc. 

Control files were built for ROS2 control of the 
motor, the joystick, mapping, simulation etc. 



A simplified Unified Robot Description Format 
(URDF) file for the robot was also created for 
simulation and use in mapping and autonomous 
navigation. 

 

Figure 13: Hardware Structure of Mobile Robot 

 

 

IV.​ Experimental Results 

1.​ Unit Tests 

Unit tests were carried out for the following 
functionalities: 

●​ Movement of the robot 
●​ Generation of scan by the LiDAR 
●​ Opening and closing of the boot mechanism 
●​ Colour detection by the Raspberry Pi 

Camera. 
●​ Plant disease detection by the Raspberry Pi 

Camera. 

a.​ Movement of Robot 

After assembly, the robot’s linear motion was tested. 
This was through creating a node that would send 
/cmdvel instructions to the Arduino Mega via serial. 
The instruction contained an RPM and directional 
components to it. The Arduino would then interpret 
the command and send the appropriate signal to the 
motors. 

On testing linear movement the robot kept turning 
left, meaning that the right motor, despite getting the 

same pulse width modulation (PWM) signal as the 
left motor, was rotating faster. It was, therefore, 
necessary to create a proportional integral differential 
(PID) controller.  

The PID controller was implemented on the Arduino 
Code. Error was calculated by subtracting the target 
number of ticks per frame from the actual value of 
ticks per frame. For the robot to move in a straight 
line, the following were the constants that were 
empirically arrived on: kp = 50, ki = 5, kd = 1. 

Initial testing was done using the ROS2 teleoperation 
package that ran and controlled on the host computer. 
The joy stick was eventually set up to give the 
/cmdvel instructions and thus control the robot.  

b.​ Generation of scan by LiDAR 

The LiDAR was set up by connecting it to the 
Raspberry Pi through a micro USB cable. A 
repository by SLAMTec, the company that 
manufactures the RPLiDAR A1, was cloned into the 
Raspberry Pi. The LiDAR was then launched using 
its respective launch file, and generated a 2D scan of 
the environs, which was visualised on RViz. 

 

Figure 14: LiDAR laser scans visualized in Rviz 

Occasionally, the LiDAR would fail to launch. On 
troubleshooting, it was discovered that the LiDAR 
was not receiving enough power from the Raspberry 
Pi. This arose due to the fact that the initial setup had 
the same Li-Po battery powering every single 
component of the robot. The issue was initially 
solved by slightly increasing the voltage sent to the 
Raspberry Pi from 5V to 5.7V. However, it was 
eventually agreed upon to use a powerbank instead to 



power the Raspberry Pi, which supplied sufficient 
power for the Raspberry Pi and all connected devices. 

c.​ Opening and closing of boot mechanism 

The boot mechanism was unit-tested by sending test 
/joy messages and verifying that the servo opened to 
release a cube and then returned to the closed 
position

 

Figure 15: Boot mechanism unloading the cube 

d.​ Colour detection by Raspberry Pi Camera 

The colour detection system serves the critical 
function of identifying the colour of cubes placed on 
the robot's loading mechanism by analyzing the LED 
illumination displayed in the loading area. This 
capability is essential for the robot's autonomous 
decision-making process, as it determines whether to 
deposit the cube in the blue or orange zone during the 
final unloading phase.  

The system operates using a Raspberry Pi Camera 
Module v2 mounted on the robot, which captures 
real-time video feed of the loading area where cubes 
are dispensed with coloured LED indicators. 

The colour detection node operates as a ROS 2 
package that continuously monitors the camera feed 
and employs computer vision algorithms to detect 
and classify colours.  

When a cube is loaded onto the robot, the system 
analyzes the predominant colour visible in the 
camera's field of view using OpenCV (cv2) for image 
processing. The algorithm converts the captured BGR 
images to HSV colour space, which provides better 
colour segmentation consistency under varying 
lighting conditions compared to standard RGB. 

 The system creates binary masks for specific colour 
ranges—primarily focusing on blue and orange 
detection—by applying threshold values that define 
the lower and upper bounds of each target colour in 
the HSV spectrum. 

The detection process involves calculating the 
percentage of pixels falling within the predefined 
colour ranges for both blue and orange. The system 
compares the relative proportions of detected blue 
versus orange pixels against a confidence threshold to 
determine the dominant colour. This approach 
ensures reliable classification even when 
environmental lighting conditions fluctuate during 
competition. The node publishes two main output 
topics: one indicating the detected colour as a string 
value ("blue", "orange", or "none") and another 
providing a confidence score between 0.0 and 1.0 
representing the certainty of the classification. 

 

Figure 16: Detecting color blue in an image 

This colour detection node is functionally dependent 
on several other system components. It requires the 
camera driver node to provide a stable image feed 
through the /camera/image_raw topic. The system 
interfaces with the task coordinator node, which 
triggers colour detection at the appropriate moment 
using a service during the loading sequence and 
utilizes the colour classification results to make 
navigation decisions. The node interacts with the 
navigation system to determine the correct deposit 
zone based on the identified cube colour. 

 



e.​ Plant disease detection by Raspberry Pi 
Camera​  

The potato disease detection subsystem was designed 
as a modular vision pipeline built around the 
Raspberry Pi camera and implemented in ROS 2. The 
main objective was to acquire a continuous image 
stream from the camera, process the frames through 
machine learning, and provide disease classification 
results in real time or on demand. The architecture 
emphasizes modularity, low computational overhead, 
and flexibility, allowing smooth integration into the 
broader robotics framework for competition tasks. 

Initially, a custom model was trained using 
TensorFlow, focusing on distinguishing between 
healthy and unhealthy potato leaves. However, as 
development progressed, a more complete 
PyTorch-based model was provided, trained to 
classify three classes: Early Blight, Late Blight, and 
Healthy. To align with this improved model, it was 
decided upon to integrate it into our pipeline instead 
of continuing with the TensorFlow approach. This 
ensured consistency, allowed more accurate 
classification, and streamlined the system design. 

 

Figure 17: Potato Plant disease detection model detecting a 
healthy plant 

The system consists of four key ROS 2 components: 

●​ Headless Camera Node – acquires and 
publishes images, provides image saving 
service.​
 

●​ Potato Disease Detection Node – subscribes 
to camera feed, performs inference, 
publishes results.​
 

●​ Inference Engine – wraps a fine-tuned 
ResNet-18 model for disease classification.​
 

●​ Service Node – provides on-demand, 
averaged predictions for stable outputs. 

Detailed Description of the Nodes 

Headless Camera Node​
This node is responsible for live image acquisition 
from the Raspberry Pi camera. Captured frames are 
converted into ROS‐compatible sensor_msgs/Image 
messages and published on the /camera/image_raw 
topic. It runs in a lightweight, headless mode without 
GUI dependencies to minimize resource usage on the 
embedded platform.​
Additionally, the node offers a ROS service 
(/save_image) that allows an external request to 
capture and save the current frame with a timestamp. 
This function is useful both for dataset generation and 
for verifying the camera pipeline during testing. 

Potato Disease Detection Node​
The detection node, implemented within the package 
rdj2025_potato_disease_detection, subscribes to the 
incoming image topic. Frames are converted from 
ROS → OpenCV → PIL format to prepare them for 
inference. The node then passes the images to the 
inference engine and publishes the classification 
result as a std_msgs/String message on the 
/inference_result topic.​
This node therefore serves as the bridge between raw 
visual data and decision-level output, making results 
available to other modules in the system. 

Inference Engine​
The inference engine is defined in a dedicated 
module (inference_engine.py). It encapsulates the 
trained machine learning model and its preprocessing 
pipeline. Specifically, a ResNet-18 architecture is 
employed, with its final fully connected layer 
modified to handle three target classes. Pretrained 
weights were fine-tuned for potato leaf disease 
classification, and the model is loaded at runtime 
from stored .pth weights.​
Input images are preprocessed using resizing, 
cropping, and normalization before inference. The 
engine supports both CPU and GPU execution, 
automatically selecting GPU if available. The output 



is the predicted disease label (Early Blight, Late 
Blight, or Healthy). 

Service Node​
In order to balance continuous live feed availability 
with efficient inference, an additional service node 
was introduced. This node subscribes to the headless 
camera stream but only processes frames on request. 
When called, it captures three consecutive frames, 
performs inference on each, and averages the results 
to output a single classification response.​
This design reduces the redundancy of running 
inference on every frame (~0.1 s intervals), lowers 
computational load on the Raspberry Pi, and 
improves robustness by mitigating noise from motion 
or lighting variations.  

 

Figure 18: Screenshot of a terminal during a service call. 

Several challenges arose during implementation. 
First, running inference continuously on every frame 
led to high system load and repetitive outputs. The 
service-based approach was introduced to address 
this limitation, but additional optimization of model 
deployment (e.g., quantization or pruning) may 
further improve efficiency.​
Another difficulty was with visualization: although 
inference results are accessible as ROS messages, 
overlaying predictions directly on images in real time 
proved problematic due to GUI compatibility issues 
on the headless Raspberry Pi setup. Future work will 
explore lightweight visualization tools or web-based 

dashboards to display annotated outputs.​
Model performance varied across test conditions. 
While the current ResNet-18 achieves reasonable 
accuracy, retraining or fine-tuning with additional 
potato leaf datasets may be necessary to improve 
reliability under field conditions. 

2.​ Integration Tests 

Integration tests were carried out for the following 
functionalities: 

●​ Generation of map 
●​ Autonomous navigation of the robot 

a.​ Generation of map 

The prerequisites to generating a good map are: 

●​ A working URDF with correct transforms. 
●​ LiDAR scans publishing to /scan topic 
●​ Wheel encoder odometry publishing to 

/odom topic. 
●​ SLAM launch file. 
●​ Teleoperation for moving the robot around. 

After getting the requirements a map was generated 
by moving the robot around with the joystick in  
space. SLAM worked properly, but there were some 
small distortions in the map generated due difficulties 
that arose from the use of a four-wheel drive system.  

 

Figure 19: Map generated from the gamefield 

Parameters were adjusted to solve the issue by setting 
up the robot to chiefly depend on laser scan from the 
LiDAR in order to rectify itself when the odometry of 
the URDF were off. This caused a significant 
improvement in the map generated. 

 



b.​ Autonomous navigation of the robot 

For autonomous navigation, the main prerequisites 
were: 

●​ A previously generated and saved map. 
●​ Adaptive Monte Carlo Localisation (AMCL) 

for localization on the map. 
●​ The Nav2 stack with planner, controller, and 

recovery behaviors. 
●​ Correct transforms in the URDF.​

 

Once the map was ready, we placed the robot in the 
mapped space, launched AMCL for localization, and 
started Nav2. Using RViz, we set different goal poses 
for the robot. The robot was able to localize itself and 
move towards the goals on its own. 

There were a few deviations in the path, mostly due 
to the four-wheel drive setup and small differences in 
the motors, but overall the navigation worked as 
expected. The robot combined localization, planning, 
and motion control into a working pipeline that 
allowed it to move without any manual control. 
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