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A. Design Strategy 

The design strategy for the ROOK Droid project involved 

a collaborative effort between Joint Team 4, which consisted 

of 5 members from the ROOK Droid team working on the 

mobile platform and 2 members from the Echo team 

handling navigation. This joint team brought together 

expertise in both mechanical design, electrical design and 

software development to address the competition challenges 

efficiently. 

 

General Approach to Competition Challenges: 

 

1. Modular Design and Specialisation: The team's 

approach was based on dividing the robot’s development into 

two core areas: the mobile platform and the navigation 

system. This modular strategy allowed for focused work on 

each aspect, ensuring that the platform provided robust 

mechanical support, while the navigation system was 

optimised for real-time mapping and decision-making. This 

clear division of tasks enhanced both development speed and 

reliability. 

 

2. Mapping and Navigation: The navigation system, led by 

the Echo team, used RP Lidar for precise environmental 

mapping. Focusing on real-time obstacle detection and 

autonomous movement, the robot was designed to make 

quick and accurate decisions during the competition. The RP 

Lidar provided 360-degree scanning, ensuring that the robot 

could understand its environment and navigate effectively 

without human intervention. 

 

3. Testing and Optimization: The team allocated 

significant time to testing and refining the mobile platform 

and navigation. The navigation algorithms were tested using 

ROS2 simulations (Rviz and Gazebo) and real game field 

trials, ensuring the system’s capability and reliability in 

dynamic environments. The mobile platform, designed by 

the ROOK team, was tested for stability, durability, and 

smooth movement, allowing the robot to perform efficiently 

under competition conditions. 

 

 

4. Reliability vs. Complexity 

 

 

 

- Reliability Over Complexity: The team opted for 

reliable, proven technologies that ensured system stability. 

For instance, while more advanced sensors or processors like 

the NVIDIA Jetson could increase capability, they would 

introduce complexity and potential failure points. The 

decision to use the Raspberry Pi 4 balances computational 

power with reliability, as it can handle tasks like running 

ROS2 without overwhelming the system. 

 

- Motor Control Simplicity: The mobile platform 

employed closed-loop control using motor encoders for 

precise movement. This allowed the robot to maintain 

accurate speed and position control without introducing the 

complexities of open-loop systems. The use of an L298N 

motor driver ensured adequate power delivery without 

unnecessary complications. 

 

5. Capability vs. Robustness 

 

- Capability in Navigation: The navigation team focused 

on enhancing the robot’s mapping capability, using RP Lidar 

to create detailed and real-time maps of the environment. 

This capability allowed the robot to navigate complex game 

field paths and avoid obstacles autonomously. The team 

maintained a robust system by avoiding unnecessary features 

that could compromise stability. 

 

- Robust Mobile Platform: The ROOK team emphasised 

the durability and stability of the mobile platform. The 

chassis was made from lightweight acrylic, ensuring the 

robot was both stable and energy-efficient. A round chassis 

design was used to improve manoeuvrability, allowing the 

robot to rotate easily in tight spaces, further enhancing its 

navigation performance. 

 

6. Testing for Reliability 

 

Given the limited preparation time, the team dedicated 

resources to testing and improving the reliability of the 

existing systems. The team ensured that the robot can operate 

consistently under competition conditions by continuously 

testing the integration of the mobile platform and navigation 

systems in both simulations and real-world environments. 

This approach minimised the risk of failure, as potential 
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issues were identified and addressed early in the 

development process. 

B. Vehicle Design 

1. Design process 

CAD design (Mechanical design) – Autodesk Inventor was 

used to design the parts. 

 

Figure 1 CAD Design Assembly 

Electrical circuit design was done. 

Budget preparation – bill of materials required was 

prepared and forwarded for purchase. 

Purchase of components – components were purchased and 

distributed. 

Mechanical components fabrication - laser cutting of the 

acrylic, the parts were glued together, 

Electrical components circuit design – electrical circuit 

connection was done (motors, motor driver, Arduino, 

Raspberry Pi, Lithium-Ion batteries, power bank) 

Integration of mechanical and electrical components - 

wheels, motors, couplers, motor brackets, batteries, 

Arduino and chassis (temporary robot assembly) was done 

Move the robot using the microcontroller (first testing) – 

the robot was first moved to test wheel alignment, motors 

condition and overall assembly. 

Navigation development - The navigation stack was 

implemented on a robotic system using ROS2. The 

navigation setup integrated multiple software packages, 

allowing the robot to autonomously move and explore its 

environment. The primary goal of the navigation system was 

to enable the robot to map, localize, and navigate in a 

simulated or real-world environment using ROS2. 

Integration of mobile platform and navigation – lidar 

addition, map creation (mobile platform and navigation 

team working together). 

Final assembly - permanent robot assembly 

Testing - game field testing, mapping and navigation 

Finalising - final fixes and perfecting the navigation. 

 

Figure 2 Final Robot assembly (tested) 

2. Methodology and design result 

Design considerations - During the design, several 

considerations were applied to ensure that the right 

components were chosen for the robot. Each part used is 

discussed below: 

Raspberry Pi 

Raspberry Pi is the brain for the robot. The following are 

key considerations for choosing a computer for this kind of 

project: 

 
Figure 3 Raspberry Pi 

 

Why Raspberry Pi: The Raspberry Pi 4 was the 

recommended option due to its ubiquity, relatively low cost, 

and strong community support. While simpler robots might 

run on a smaller chip like an Arduino, the Pi is powerful 

enough to handle more complex software, such as ROS 

(Robot Operating System), which requires more computing 
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power. ROS2 was used in this project and it required a 

powerful chip like Raspberry Pi. 

 

Power: The Raspberry Pi can be powered by a 5V source, 

making it convenient for robotic applications. For other 

options like laptops or the Intel NUC, larger batteries may 

be required. 

    

Alternatives: Single-board computers like the NVIDIA 

Jetson, which could be better for GPU-heavy tasks like 

machine learning. A laptop or an Intel NUC can also be 

considered for more demanding projects, but these options 

could be more complex due to power and size constraints. 

 

Power Considerations 

Devices are rated for the maximum power they can draw, 

and components must work within these limits to avoid 

overheating or damage. 

Power sources used are Power bank (for microcontroller) 

and LiPo (for motors). 

The following are the key concepts and considerations for 

powering the robot: 

 

1. Voltage Considerations 

Operating voltage - It was essential to consider the 

operating voltage of each device. 

5 volts: For microcontrollers (Raspberry Pi and Arduino) 

and USB devices. Power bank used since it outputs a stable 

5V. 

12 volts: For the DC motors, which required higher power. 

LiPo was used. 

 

2. Current Considerations 

Current Draw - It was essential to estimate the total current 

draw of all the components in the robot to choose the right 

power supply and regulators. 

For example, Raspberry Pi and lidar draw up to 5 amps. 

Motor Current: Motors draw different amounts of current 

based on load and torque. The stall current is the maximum 

current drawn when the motor is under maximum load, and 

it is crucial to ensure the motor driver can handle it. 

 

3. Battery Choice 

Battery Selection: The choice for our mobile robot was a 

Lithium-Ion Cylindrical Battery. Each is rated 3.7V. 

Considerations include: 

- Lower cost than other alternatives like LiPo battery. 

- Lighter 

- Easy to recharge and requires less monitoring 

compared to LiPO which is sensitive and requires 

regular monitoring. 

 
Figure 4 Lithium-Ion Batteries 

 

4. Wiring and Connectors 

Ensured that all wiring and connectors were rated for the 

currents required. For example, breadboards and jumper 

wires should only be used for very low current, while 

heavier-duty connectors like XT60 are required for high-

current applications. 

        5.   Power Bank Choice 

Power bank was used to power the Raspberry Pi. The 

following Product Power Parameters were considered: 

Capacity: 20000mAh (74Wh) 

Input 1(Micro-USB): 5V/2A 

Input 2(Type-C): 5V/3A 

Output 1(USB-A): 5V/3A (Max) 

Output 2(USB-A): 5V/3A (Max) 

Output 3(Type-C): 5V/3A (Max) 

The output did not exceed 5V / 3A which is safe for the 

Raspberry Pi. 

 

 
Figure 5 Power Bank Powering Raspberry Pi 

 

5. Safety Features 
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   - Power switch: Allowed for safe disconnecting of the 

battery. 

   - Fuses: Protected the circuit from short circuits by 

breaking the circuit if too much current flowed, preventing 

damage and fire hazards. 

Motors 

Designing a motor system for the robot involved several 

key considerations and calculations to ensure optimal 

performance. These considerations were broken down into 

several layers, each contributing to the motor's overall 

operation and control. 

 

1. Motor Selection   

   - Motor Type: Different types of motors (for example: 

brushless, stepper) require varying control methods, so it 

was essential to choose the right type for the application. 

We chose a DC 12V 200 rpm motor. 

 
Figure 6 Motor Selected (DC 12V 200 RPM with Encoder Module) 

   - Voltage and Current Requirements: Motors typically 

required higher voltage and current than what a 

microcontroller could provide. For example, a 12V DC 

motor was used and the motor's current rating was 

considered to avoid overloading the control circuitry. 

   -Motor with Encoder: Motors equipped with encoders 

provide feedback on speed and position, enabling closed-

loop control for more accurate and stable motor behaviour. 

We chose a motor with encoder which made speed and 

position control easier. 

2. Motor Control 

   - Open-Loop Control: This simpler method maps the 

desired speed or position to a specific PWM value, but it 

lacks feedback, which makes it less accurate, especially 

under varying loads. Pulse Width Modulation (PWM) is 

used to control motor speed by modulating the on/off signal 

to the motor. The duty cycle of the PWM signal determines 

the motor's effective voltage and, thus, its speed. 

 

Duty Cycle = (On Time / Total Time) 

The motor's effective voltage is proportional to the PWM 

duty cycle. A higher duty cycle means the motor will run 

faster, and a lower duty cycle means it will run slower. 

 

   - Closed-Loop Control (Feedback Control): To achieve 

more precise control, closed-loop feedback is necessary. 

Encoders on the motor provide real-time speed or position 

data, which is used to adjust the PWM signal dynamically. 

In a closed-loop system, the motor's actual performance is 

measured, and adjustments are made to match the desired 

performance. 

The most common closed-loop control method is 

Proportional-Integral-Derivative (PID) control. The 

controller adjusts the motor's input based on the difference 

between the target speed (or position) and the actual 

measured value. 

The motor's speed is calculated based on encoder feedback, 

which sends pulses corresponding to the motor's rotation. 

By counting the number of pulses in a given time frame, the 

controller can determine the motor’s speed. 

The encoder produces a certain number of pulses per 

revolution (PPR). For example, if the encoder gives 100 

pulses per motor revolution, and the gear ratio multiplies 

the output revolutions, you can calculate the total output 

revolutions using the formula: 

 

Speed (RPM) = (Encoder Counts / PPR) x Gear Ratio 

This equation converts the encoder feedback into the 

motor's speed in revolutions per minute. 

 

Closed- loop control was used to control the motors. 

3. Speed, Torque and Load Considerations 

The torque the motor generates depends on the current it 

draws and the mechanical load it encounters. The motor's 

torque needs to be considered if sufficient for the expected 

load, considering factors like gear ratios, friction, and 

inertia. 

Used a 200-rpm dc motor. Encoders used to control its 

speed. Compared to a 130-rpm motor, it was better to have 

a higher speed motor whose speed could be reduced than a 

low-speed motor (130 rpm) whose speed cannot be 

increased beyond the rated value. 

Suppose the 65mm wheel diameter, and max speed = wr, 

Then. 

w_1 = 130*2π/60 = 13.61 rad/s 

w_2 = 200*2π/60 = 20.94 rad/s 

 

max velocity_1 = w1xr = 0.44m/s 

max velocity_2 = w2xr = 0.68m/s 

4. Power  

The motor and the motor driver should have a sufficient and 

stable power supply. For example, the L298N motor driver 

has a voltage drop that needs to be accounted for, meaning 

the motor may receive less than the input voltage. 
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Lithium-ion batteries was selected to power the motors, 

which was chosen for their lower cost and met power 

requirements of the motors. 

5. Communication 

Serial (UART): Used to send speed commands to the 

Arduino motor controller from the Raspberry Pi. 

CAN, I2C, or PWM can also be used in other setups 

depending on the motor controller. 

 

Motor Driver 

A motor driver was essential for controlling the motor's 

speed and direction. Key considerations include: 

   - Voltage Matching: The motor driver matched the 

motor's voltage requirement (12V for motor chosen). 

   - Current Capacity: The driver supported the current 

requirements of the motor. For example, the L298N motor 

driver used, supports 2A of continuous current with spikes 

up to 3A. 

 
Figure 7 Motor Driver (LN298N) 

 

RP Lidar   

RP Lidar was the primary sensor used in the robot to map 

its environment, such as a game field.   

Mapping was essential for:  

- Environmental Awareness: Mapping enabled the robot to 

understand and navigate its environment efficiently, 

avoiding obstacles and planning paths allowing it to reach 

specific points in the game field and navigate effectively.   

- Autonomous Movement: With a map of its surroundings, 

the robot could move autonomously, making real-time 

decisions about where to go or how to react to dynamic 

changes in its environment.   

- Task Optimization: Mapping allowed for more precise and 

optimised task execution, whether it was navigating a maze, 

following a path, or interacting with objects on the game 

field. 

 
Figure 8 RP Lidar 

 

Why use RP Lidar?   

- High Accuracy: RP Lidar provides accurate 360-degree 

scanning of the environment, giving the robot a detailed 

map of its surroundings.   

- Low Latency: It offers fast real-time updates, which is 

essential for responsive movements in dynamic 

environments.   

- Lightweight and Compact: It is small and light, which 

minimises the weight burden on the robot, allowing for 

faster and more agile movement.   

- It is also affordable. 

 

Chassis   

The chassis supports the robot's electrical and electronic 

components. It was made from acrylic and is round in 

shape. 

 
Figure 9 Chassis designed parts file for Laser Cutting 

 

Acrylic was used because it is:   
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- Lightweight: Acrylic is much lighter than metals like steel 

or aluminium, reducing the overall weight of the robot, 

which helps in mobility and energy efficiency.   

- Cost-Effective: Acrylic is relatively inexpensive, making 

it a cheaper option for the competition's small budget.   

- Non-Conductive: Acrylic is a poor conductor, preventing 

electrical shorts or interference with electronic components.   

- Ease of Machining: Acrylic is easy to cut, shape, and drill, 

allowing for greater flexibility in design and quicker 

assembly. It was cut using a laser cutting machine which 

was fast and efficient. Assembling was also easy and quick 

using glue. 

 

Why round in shape?   

- Improved Manoeuvrability: A round chassis allowed for 

better movement in tight spaces since the corners won't get 

caught on obstacles. This shape is necessary as the robot 

needs to rotate frequently in the game field. 

- Even Weight Distribution: A round design helped 

distribute weight more evenly, improving balance and 

stability, during turning or when carrying loads.   

- Optimised for omnidirectional movement as the robot 

used castor wheels making smooth turns possible. 

 

Couplers   

Couplers were used to connect the motors and rubber-

driven wheels. They were used because of:  

- Efficient Power Transfer: Couplers ensure efficient 

transmission of torque from the motor to the wheels, 

minimising energy loss.   

- Vibration Dampening: They help to absorb small 

misalignments and vibrations between the motor shaft and 

wheels, prolonging the lifespan of both the motor and the 

wheels.   

- Couplers make it easier to align components (wheels and 

motor shafts) that may not have perfectly matching shafts 

sizes, improving flexibility in the mechanical design. 

 
Figure 10 Coupler 

 

Motor Brackets   

Motor brackets were used to mount the motors securely on 

the chassis. They were used for:   

- Stability: Properly mounting the motors ensures that they 

stay securely in place, even when the robot is moving over 

uneven terrain or at high speeds.   

- Alignment: Motor brackets help to align the motor 

correctly with other components, such as wheels and 

couplers, ensuring smooth and efficient operation.   

- Vibration Reduction: A secure mount reduces vibrations 

that can cause wear and tear on both the motor and the 

chassis, improving the robot’s durability.   

- Brackets provide flexibility in positioning motors, 

allowing adjustment of motor placement based on the 

robot's overall layout.  

 
Figure 11 Motor Bracket 

 

Rubber Wheels 

Driven by the DC motors to move the robot from one point 

to another. 65 cm in size. Chosen because of its ease to be 

coupled with the motors using couplers. Its size (65 cm 

diameter) was ideal for stability and lidar mapping (not too 

high or too low). 
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Figure 12 Rubber Wheels 

 

Castor Wheels 

Two castor wheels were used. Castor wheels were used 

because: 

 

1. Manoeuvrability and free rotation: Castor wheels allowed 

the robot to turn smoothly without needing all wheels to be 

powered. This was useful for multi-directional movement. 

 

2. Stability: They provide additional support and stability, 

as the robot had two main drive wheels, preventing the 

robot from tipping over. 

 

3. Reduced Friction: Castor wheels can swivel in any 

direction, minimising the friction that could occur when the 

robot turns, allowing smoother and easier movement. 

 

4. Cost: Castor wheels are simpler and cheaper than 

powered wheels. 

 

5. Compact Design: They require less space than the driven 

wheels. 

 
Figure 13 Castor Wheel 

Lessons learnt: 

- Accuracy in CAD designs dimensions. 

- Ensuring purchase of the components having the 

same dimensions as the designed model. This 

involves checking the datasheets and seller’s 

descriptions. 

- Use of bolts and screws is encouraged over glue due 

to its ease of removal in case of errors during 

placement. Glue is difficult to remove and could alter 

aesthetics, material or dimensions. 

C. Navigation 

 

1. Introduction 

This section covers the navigation stack implemented on 

a robotic system using ROS2. The navigation setup 

integrates multiple software packages, allowing the robot to 

autonomously move and explore its environment. The 

primary goal of the navigation system is to enable the robot 

to map, localize, and navigate in a simulated or real-world 

environment using ROS2. 

2. Navigation Packages Overview 

The ROS2 navigation system relies on several key 

packages to ensure robust and accurate movement. Below is 

an overview of the key packages used: 

 

Sllidar: This package integrates a 2D LIDAR for scanning 

the environment. The LIDAR provides distance 

measurements to obstacles, which are critical for mapping 

and localization tasks. 

 

Serial:  The serial package opens a communication link 

(typically via USB or UART) between the Raspberry Pi and 

Arduino.Velocity commands, such as linear and angular 
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velocities, are sent from the Pi to the Arduino over this serial 

connection.The Arduino processes these commands to 

control the motors and sends encoder data back to the Pi for 

odometry calculation. 

   

Diff drive Arduino: This package interfaces with a 

differential drive robot. It sends commands to the motors 

based on velocity inputs, typically received from ROS2 

navigation or teleoperation packages, and reads feedback 

from encoders for odometry. It uses the serial package to 

manage communication between the Raspberry Pi and the 

Arduino. 

 

Gazebo: A simulation environment used to simulate the 

robot in a virtual environment, including sensors like LIDAR 

and actuators like motors. Gazebo is tightly integrated with 

ROS2, allowing real-time testing of navigation algorithms. 

 
Figure 14 Robot in Gazebo 

 

Rviz: A visualization tool in ROS2 that allows the user to 

view the robot's sensor data, map, and planned trajectories in 

real time. This is useful for debugging and tuning the 

navigation stack. 

 

Colcon: A build tool for ROS2. It is used to compile and 

link the various packages within the navigation stack. 

 

Teleop_twist: This package enables manual control of the 

robot using a keyboard or joystick. It publishes velocity 

commands (`/cmd_vel`) that are interpreted by the diff drive 

package to control the robot's motors. 

 

Twist_mux: This package multiplexes various sources of 

velocity commands (`/cmd_vel`), ensuring that the correct 

source (e.g., teleoperation or autonomous navigation) has 

control over the robot at the appropriate time. 

 

Nav2: The main package for ROS2 navigation. It provides 

functionality for planning, controlling, and recovering the 

robot's trajectory. Nav2 integrates sensors (like LIDAR) and 

odometry data for localization, map updates, and 

autonomous path planning. 

 

Slam Toolbox: This package handles Simultaneous 

Localization and Mapping (SLAM), allowing the robot to 

build a map of its environment while localizing itself within 

that map. It’s crucial for operations in unknown or dynamic 

environments. 

 

ROS2 Control: Used to manage robot hardware resources 

(such as motors and sensors), ensuring that commands from 

navigation or teleoperation systems are properly executed on 

the hardware side. 

 

3.Robot Navigation Architecture 

The ROS2 navigation stack is designed to enable 

autonomous navigation by integrating perception, planning, 

and control components. The navigation process consists of 

the following phases: 

 

1. Perception: The robot uses the RPlidar sensor to 

gather distance data from its environment. This data 

is processed by the SLAM Toolbox to generate a 

2D occupancy grid map. 

2. Localization: Once the map is generated, the robot 

localizes itself within the environment. Localization 

is based on the matching of LIDAR scans to the pre-

built map.ACML may be used. 

3. Path Planning: Using Nav2, the robot determines a 

path to a goal position. Nav2 uses algorithms 

like,Dijkstra's or A* to plan optimal paths, 

considering the known map and obstacles. 

4. Control: The robot’s motors are controlled via the 

diff drive Arduino package, which receives velocity 

commands (from Nav2 or Teleop_twist) through 

the Twist_mux. The robot then follows the planned 

trajectory. 

5. Recovery: Nav2 includes recovery behaviors in 

case the robot encounters issues (e.g., getting 

stuck). This could involve backing up, rotating in 

place, or re-planning a new path. 

 

4. Simulation and Testing 

Testing the navigation system is performed in the Gazebo 

simulation environment. Gazebo allows for creating 

complex environments with obstacles, ramps, and walls, 

simulating the robot's interaction with its surroundings. 

 

In the simulation, the following components are tested: 

LIDAR sensor accuracy: Ensures that obstacle detection 

works as expected. 

● Path planning: Verifies that Nav2 can compute 

paths in various types of environments. 

● Localization robustness: Tests how well the robot 

localizes itself using SLAM Toolbox and odometry. 

● Obstacle avoidance: Ensures the robot can avoid 

obstacles in real-time by recalculating paths when 
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necessary. 

 

All simulated outputs can be visualized in Rviz, providing 

insight into sensor readings, map quality, and the robot's 

trajectory. 

 
Figure 15 Gazebo Simulation showing the robot and the map (game field) 

5. Challenges 

Several challenges are encountered when building the 

navigation stack: 

Sensor noise: LIDAR data can be noisy, which affects the 

accuracy of mapping and localization. 

Odometry drift: The encoders used by the diff drive 

system can introduce errors over time, affecting the robot’s 

localization accuracy. 

Real-time performance: Ensuring that the entire 

navigation stack runs in real time, especially with complex 

environments and many obstacles, requires fine-tuning of the 

control loop and sensor processing rates. 

 

6. Conclusion 

The ROS2 navigation stack leverages multiple packages 

to create a robust, autonomous navigation system. The 

integration of LIDAR-based perception, SLAM for mapping, 

and differential drive control allows the robot to navigate its 

environment efficiently. Future work may involve 

optimizing the system for hardware deployment and 

improving recovery behaviors in complex environments. 

 

D. Experimental Results 

 

To ensure the reliability and performance of the ROOK 

Droid, Team 4 carried out extensive testing, including unit 

tests, integration tests, and simulations using ROS2, Rviz, 

and Gazebo, as well as real-world field trials. 

 
Figure 16 ROS2 Interaction 

 

1. Testing Procedures 

 

1. Unit Testing: Individual components like the motors, 

sensors (RP Lidar), and motor drivers (L298N) were tested 

independently. This included: 

   - Motor Testing: The motors were tested under different 

speeds, ranging from 100 RPM to 200 RPM, with feedback 

from encoders to validate speed control and accuracy. 

   - Sensor Testing: The RP Lidar was tested for its 

mapping accuracy in static and dynamic environments. The 

sensor was validated by comparing its readings with known 

distances and obstacles on the game field. 

 

2. Integration Testing: Once individual components were 

tested, the integration of the mobile platform and navigation 

system was done. Key aspects tested included: 

   - Synchronisation between motor control and real-time 

mapping. 

   - Power stability from LiPo batteries and the power bank 

for smooth operation without unexpected shutdowns or 

overheating. 

   - Closed-loop control of the motors using encoder 

feedback for precision and path accuracy. 

 

3. Simulation: Before deploying in real-world 

environments, the team utilised Gazebo and Rviz simulations 

to test the robot's mapping and navigation capabilities. The 

robot was simulated navigating complex game fields with 

obstacles, testing its path-planning algorithms and 

responsiveness to environmental changes. 

   - Gazebo Simulation: Focused on physical interactions 

like obstacle avoidance, smooth movement, and collision 

detection. 

   - Rviz: Used for visualising Lidar-based mapping and 

real-time sensor data to assess the navigation system’s 

accuracy. 

 

2. Testing Outcomes 

 

- Motor Performance: At lower speeds (100 RPM), the 

motor encoders provided closely matching readings, 

ensuring reliable movement. However, at higher speeds (200 

RPM), encoder discrepancies increased, requiring 
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calibration. The motor restart issue at longer distances was 

identified, which temporarily fixed encoder inconsistencies. 

   

- Power Supply: The Lithium-ion battery and power bank 

were tested for voltage stability under varying loads. Both 

power sources provided adequate power without any 

significant dips, allowing consistent performance in the 

motors and Raspberry Pi. 

 

- Mapping and Navigation: The RP Lidar produced highly 

accurate maps of the game field in both simulation and 

physical tests, allowing the robot to navigate autonomously 

with minimal error. In real-world tests, the robot successfully 

detected and avoided obstacles, demonstrating the efficacy 

of the integrated mapping and control systems. 

 

3. Reliability and Robustness 

 

- Robustness Analysis: The acrylic chassis proved durable 

during field tests, showing no signs of warping or damage 

under stress. The motor brackets provided stable mounting, 

minimising vibrations that could lead to component wear 

over time. 

   

- Reliability Modelling: Based on the testing data, failure 

points were identified in the motor control system at higher 

speeds, specifically related to encoder accuracy. To mitigate 

this, the team implemented calibration strategies and 

adjusted the control algorithms to improve speed 

synchronisation. 

 

- Failure Analysis: The team performed failure analysis on 

key components such as the motors and power system. No 

major failures were detected, but minor issues like motor 

speed discrepancies and temporary power fluctuations were 

noted and addressed in the design. 

 

The robot's performance met the expected design criteria, 

with minor improvements required to enhance speed 

accuracy at higher RPMs and to further optimise power 

management during extended operation. 

 

 
Figure 17 Robot under game field testing (navigation) before the 

competition 
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G. Appendix 

 
Figure 18 Chassis Design Top View 

 
Figure 19 Chassis Design Bottom View 

 
Figure 20 Chassis Design Front View 

 
Figure 21 Chassis Design Right View 

 
Figure 22 Game field 


