Joint Team 4

1of11

Joint Team 4 Technical Design Paper for the
Robotics Dojo Competition 2024

Felix Ronoh, Onami Omariba Collins, Onyapidi Jeremiah, Hillary Murimi and Lukundo Okemba (R.O.0.K. Droid)
Matiko Maroa and Nindo Emmanuel (ECHO)

A. Design Strategy

The design strategy for the ROOK Droid project involved
a collaborative effort between Joint Team 4, which consisted
of 5 members from the ROOK Droid team working on the
mobile platform and 2 members from the Echo team
handling navigation. This joint team brought together
expertise in both mechanical design, electrical design and
software development to address the competition challenges
efficiently.

General Approach to Competition Challenges:

1. Modular Design and Specialisation: The team's
approach was based on dividing the robot’s development into
two core areas: the mobile platform and the navigation
system. This modular strategy allowed for focused work on
each aspect, ensuring that the platform provided robust
mechanical support, while the navigation system was
optimised for real-time mapping and decision-making. This
clear division of tasks enhanced both development speed and
reliability.

2. Mapping and Navigation: The navigation system, led by
the Echo team, used RP Lidar for precise environmental
mapping. Focusing on real-time obstacle detection and
autonomous movement, the robot was designed to make
quick and accurate decisions during the competition. The RP
Lidar provided 360-degree scanning, ensuring that the robot
could understand its environment and navigate effectively
without human intervention.

3. Testing and Optimization: The team allocated
significant time to testing and refining the mobile platform
and navigation. The navigation algorithms were tested using
ROS2 simulations (Rviz and Gazebo) and real game field
trials, ensuring the system’s capability and reliability in
dynamic environments. The mobile platform, designed by
the ROOK team, was tested for stability, durability, and
smooth movement, allowing the robot to perform efficiently
under competition conditions.

4. Reliability vs. Complexity

- Reliability Over Complexity: The team opted for
reliable, proven technologies that ensured system stability.
For instance, while more advanced sensors or processors like
the NVIDIA Jetson could increase capability, they would
introduce complexity and potential failure points. The
decision to use the Raspberry Pi 4 balances computational
power with reliability, as it can handle tasks like running
ROS2 without overwhelming the system.

- Motor Control Simplicity: The mobile platform
employed closed-loop control using motor encoders for
precise movement. This allowed the robot to maintain
accurate speed and position control without introducing the
complexities of open-loop systems. The use of an L298N
motor driver ensured adequate power delivery without
unnecessary complications.

5. Capability vs. Robustness

- Capability in Navigation: The navigation team focused
on enhancing the robot’s mapping capability, using RP Lidar
to create detailed and real-time maps of the environment.
This capability allowed the robot to navigate complex game
field paths and avoid obstacles autonomously. The team
maintained a robust system by avoiding unnecessary features
that could compromise stability.

- Robust Mobile Platform: The ROOK team emphasised
the durability and stability of the mobile platform. The
chassis was made from lightweight acrylic, ensuring the
robot was both stable and energy-efficient. A round chassis
design was used to improve manoeuvrability, allowing the
robot to rotate easily in tight spaces, further enhancing its
navigation performance.

6. Testing for Reliability

Given the limited preparation time, the team dedicated
resources to testing and improving the reliability of the
existing systems. The team ensured that the robot can operate
consistently under competition conditions by continuously
testing the integration of the mobile platform and navigation
systems in both simulations and real-world environments.
This approach minimised the risk of failure, as potential

Joint Team 4

issues were identified and addressed early in the

development process.

B. Vehicle Design
1. Design process

CAD design (Mechanical design) — Autodesk Inventor was
used to design the parts.

Figure 1 CAD Design Assembly
Electrical circuit design was done.

Budget preparation — bill of materials required was
prepared and forwarded for purchase.

Purchase of components — components were purchased and
distributed.

Mechanical components fabrication - laser cutting of the
acrylic, the parts were glued together,

Electrical components circuit design — electrical circuit
connection was done (motors, motor driver, Arduino,
Raspberry Pi, Lithium-lon batteries, power bank)

Integration of mechanical and electrical components -
wheels, motors, couplers, motor brackets, batteries,
Arduino and chassis (temporary robot assembly) was done

Move the robot using the microcontroller (first testing) —
the robot was first moved to test wheel alignment, motors
condition and overall assembly.

Navigation development - The navigation stack was
implemented on a robotic system using ROS2. The
navigation setup integrated multiple software packages,
allowing the robot to autonomously move and explore its
environment. The primary goal of the navigation system was
to enable the robot to map, localize, and navigate in a
simulated or real-world environment using ROS2.

Integration of mobile platform and navigation — lidar
addition, map creation (mobile platform and navigation
team working together).

20f11

Final assembly - permanent robot assembly

Testing - game field testing, mapping and navigation

Finalising - final fixes and perfecting the navigation.

Figure 2 Final Robot assembly (tested)
2. Methodology and design result

Design considerations - During the design, several
considerations were applied to ensure that the right
components were chosen for the robot. Each part used is
discussed below:

Raspberry Pi

Raspberry Pi is the brain for the robot. The following are
key considerations for choosing a computer for this kind of
project:

re3 Rapberry Pi

Why Raspberry Pi: The Raspberry Pi 4 was the
recommended option due to its ubiquity, relatively low cost,
and strong community support. While simpler robots might
run on a smaller chip like an Arduino, the Pi is powerful
enough to handle more complex software, such as ROS
(Robot Operating System), which requires more computing

Joint Team 4

power. ROS2 was used in this project and it required a
powerful chip like Raspberry Pi.

Power: The Raspberry Pi can be powered by a 5V source,
making it convenient for robotic applications. For other
options like laptops or the Intel NUC, larger batteries may
be required.

Alternatives: Single-board computers like the NVIDIA
Jetson, which could be better for GPU-heavy tasks like
machine learning. A laptop or an Intel NUC can also be
considered for more demanding projects, but these options
could be more complex due to power and size constraints.

Power Considerations

Devices are rated for the maximum power they can draw,
and components must work within these limits to avoid
overheating or damage.

Power sources used are Power bank (for microcontroller)
and LiPo (for motors).

The following are the key concepts and considerations for
powering the robot:

1. Voltage Considerations
Operating voltage - It was essential to consider the
operating voltage of each device.
5 volts: For microcontrollers (Raspberry Pi and Arduino)
and USB devices. Power bank used since it outputs a stable
5V.
12 volts: For the DC motors, which required higher power.
LiPo was used.

2. Current Considerations

Current Draw - It was essential to estimate the total current
draw of all the components in the robot to choose the right
power supply and regulators.

For example, Raspberry Pi and lidar draw up to 5 amps.
Motor Current: Motors draw different amounts of current
based on load and torque. The stall current is the maximum
current drawn when the motor is under maximum load, and
it is crucial to ensure the motor driver can handle it.

3. Battery Choice
Battery Selection: The choice for our mobile robot was a
Lithium-lon Cylindrical Battery. Each is rated 3.7V.
Considerations include:
- Lower cost than other alternatives like LiPo battery.
- Lighter
- Easy to recharge and requires less monitoring
compared to LiPO which is sensitive and requires
regular monitoring.

3o0f11

Figure 4 Lithium-lon Batteries

4. Wiring and Connectors
Ensured that all wiring and connectors were rated for the
currents required. For example, breadboards and jumper
wires should only be used for very low current, while
heavier-duty connectors like XT60 are required for high-
current applications.

5. Power Bank Choice
Power bank was used to power the Raspberry Pi. The
following Product Power Parameters were considered:
Capacity: 20000mAh (74Wh)
Input 1(Micro-USB): 5V/2A
Input 2(Type-C): 5V/3A
Output 1(USB-A): 5V/3A (Max)
Output 2(USB-A): 5V/3A (Max)
Output 3(Type-C): 5V/3A (Max)
The output did not exceed 5V / 3A which is safe for the
Raspberry Pi.

Figure 5 Power Bank Powering Raspberry Pi

5. Safety Features

Joint Team 4

- Power switch: Allowed for safe disconnecting of the
battery.

- Fuses: Protected the circuit from short circuits by
breaking the circuit if too much current flowed, preventing
damage and fire hazards.

Motors

Designing a motor system for the robot involved several
key considerations and calculations to ensure optimal
performance. These considerations were broken down into
several layers, each contributing to the motor's overall
operation and control.

1. Motor Selection
- Motor Type: Different types of motors (for example:
brushless, stepper) require varying control methods, so it
was essential to choose the right type for the application.
We chose a DC 12V 200 rpm motor.

Figure 6 Motor Selected (DC 12V 200 RPM with Encoder Module)

- Voltage and Current Requirements: Motors typically
required higher voltage and current than what a
microcontroller could provide. For example, a 12V DC
motor was used and the motor's current rating was
considered to avoid overloading the control circuitry.

-Motor with Encoder: Motors equipped with encoders
provide feedback on speed and position, enabling closed-
loop control for more accurate and stable motor behaviour.
We chose a motor with encoder which made speed and
position control easier.

2. Motor Control

- Open-Loop Control: This simpler method maps the
desired speed or position to a specific PWM value, but it
lacks feedback, which makes it less accurate, especially
under varying loads. Pulse Width Modulation (PWM) is
used to control motor speed by modulating the on/off signal
to the motor. The duty cycle of the PWM signal determines
the motor's effective voltage and, thus, its speed.

Duty Cycle = (On Time / Total Time)

4 0f 11

The motor's effective voltage is proportional to the PWM
duty cycle. A higher duty cycle means the motor will run
faster, and a lower duty cycle means it will run slower.

- Closed-Loop Control (Feedback Control): To achieve
more precise control, closed-loop feedback is necessary.
Encoders on the motor provide real-time speed or position
data, which is used to adjust the PWM signal dynamically.
In a closed-loop system, the motor's actual performance is
measured, and adjustments are made to match the desired
performance.

The most common closed-loop control method is
Proportional-Integral-Derivative (PID) control. The
controller adjusts the motor's input based on the difference
between the target speed (or position) and the actual
measured value.

The motor's speed is calculated based on encoder feedback,
which sends pulses corresponding to the motor's rotation.
By counting the number of pulses in a given time frame, the
controller can determine the motor’s speed.

The encoder produces a certain number of pulses per
revolution (PPR). For example, if the encoder gives 100
pulses per motor revolution, and the gear ratio multiplies
the output revolutions, you can calculate the total output
revolutions using the formula:

Speed (RPM) = (Encoder Counts / PPR) x Gear Ratio
This equation converts the encoder feedback into the
motor's speed in revolutions per minute.

Closed- loop control was used to control the motors.

3. Speed, Torque and Load Considerations
The torque the motor generates depends on the current it
draws and the mechanical load it encounters. The motor's
torque needs to be considered if sufficient for the expected
load, considering factors like gear ratios, friction, and
inertia.

Used a 200-rpm dc motor. Encoders used to control its
speed. Compared to a 130-rpm motor, it was better to have
a higher speed motor whose speed could be reduced than a
low-speed motor (130 rpm) whose speed cannot be
increased beyond the rated value.

Suppose the 65mm wheel diameter, and max speed = wr,
Then.

w_1 =130%2n/60 = 13.61 rad/s

W_2 = 200*27/60 = 20.94 rad/s

max velocity_1 = wilxr = 0.44m/s
max velocity_2 = w2xr = 0.68m/s

4. Power
The motor and the motor driver should have a sufficient and
stable power supply. For example, the L298N motor driver
has a voltage drop that needs to be accounted for, meaning
the motor may receive less than the input voltage.

Joint Team 4

Lithium-ion batteries was selected to power the motors,
which was chosen for their lower cost and met power
requirements of the motors.

5. Communication
Serial (UART): Used to send speed commands to the
Arduino mator controller from the Raspberry Pi.
CAN, 12C, or PWM can also be used in other setups
depending on the motor controller.

Motor Driver
A motor driver was essential for controlling the motor's
speed and direction. Key considerations include:

- Voltage Matching: The motor driver matched the
motor's voltage requirement (12V for motor chosen).

- Current Capacity: The driver supported the current
requirements of the motor. For example, the L298N motor
driver used, supports 2A of continuous current with spikes
up to 3A.

Figure 7 Motor Driver (LN298N)

RP Lidar

RP Lidar was the primary sensor used in the robot to map
its environment, such as a game field.

Mapping was essential for:

- Environmental Awareness: Mapping enabled the robot to
understand and navigate its environment efficiently,
avoiding obstacles and planning paths allowing it to reach
specific points in the game field and navigate effectively.

- Autonomous Movement: With a map of its surroundings,
the robot could move autonomously, making real-time
decisions about where to go or how to react to dynamic
changes in its environment.

- Task Optimization: Mapping allowed for more precise and
optimised task execution, whether it was navigating a maze,

following a path, or interacting with objects on the game
field.

50f11

Figure 8 RP Lidar

Why use RP Lidar?

- High Accuracy: RP Lidar provides accurate 360-degree
scanning of the environment, giving the robot a detailed
map of its surroundings.

- Low Latency: It offers fast real-time updates, which is
essential for responsive movements in dynamic
environments.

- Lightweight and Compact: It is small and light, which
minimises the weight burden on the robot, allowing for
faster and more agile movement.

- Itis also affordable.

Chassis

The chassis supports the robot's electrical and electronic
components. It was made from acrylic and is round in
shape.

......

3 3 T()000

Figure 9 Chassis designed parts file for Laser Cutting

Acrylic was used because it is:

Joint Team 4

- Lightweight: Acrylic is much lighter than metals like steel
or aluminium, reducing the overall weight of the robot,
which helps in mobility and energy efficiency.

- Cost-Effective: Acrylic is relatively inexpensive, making
it a cheaper option for the competition's small budget.

- Non-Conductive: Acrylic is a poor conductor, preventing
electrical shorts or interference with electronic components.
- Ease of Machining: Acrylic is easy to cut, shape, and drill,
allowing for greater flexibility in design and quicker
assembly. It was cut using a laser cutting machine which
was fast and efficient. Assembling was also easy and quick
using glue.

Why round in shape?

- Improved Manoeuvrability: A round chassis allowed for
better movement in tight spaces since the corners won't get
caught on obstacles. This shape is necessary as the robot
needs to rotate frequently in the game field.

- Even Weight Distribution: A round design helped
distribute weight more evenly, improving balance and
stability, during turning or when carrying loads.

- Optimised for omnidirectional movement as the robot
used castor wheels making smooth turns possible.

Couplers

Couplers were used to connect the motors and rubber-
driven wheels. They were used because of:

- Efficient Power Transfer: Couplers ensure efficient
transmission of torque from the motor to the wheels,
minimising energy loss.

- Vibration Dampening: They help to absorb small
misalignments and vibrations between the motor shaft and
wheels, prolonging the lifespan of both the motor and the
wheels.

- Couplers make it easier to align components (wheels and
motor shafts) that may not have perfectly matching shafts
sizes, improving flexibility in the mechanical design.

L
-

Figure 10 Coupler

6 of 11

Motor Brackets

Motor brackets were used to mount the motors securely on
the chassis. They were used for:

- Stability: Properly mounting the motors ensures that they
stay securely in place, even when the robot is moving over
uneven terrain or at high speeds.

- Alignment: Motor brackets help to align the motor
correctly with other components, such as wheels and
couplers, ensuring smooth and efficient operation.

- Vibration Reduction: A secure mount reduces vibrations
that can cause wear and tear on both the motor and the
chassis, improving the robot’s durability.

- Brackets provide flexibility in positioning motors,
allowing adjustment of motor placement based on the
robot's overall layout.

Figure 11 Motor Bracket

Rubber Wheels

Driven by the DC motors to move the robot from one point
to another. 65 cm in size. Chosen because of its ease to be
coupled with the motors using couplers. Its size (65 cm
diameter) was ideal for stability and lidar mapping (not too
high or too low).

Joint Team 4

Figure 12 Rubber Wheels

Castor Wheels
Two castor wheels were used. Castor wheels were used
because:

1. Manoeuvrability and free rotation: Castor wheels allowed
the robot to turn smoothly without needing all wheels to be
powered. This was useful for multi-directional movement.

2. Stability: They provide additional support and stability,
as the robot had two main drive wheels, preventing the
robot from tipping over.

3. Reduced Friction: Castor wheels can swivel in any
direction, minimising the friction that could occur when the
robot turns, allowing smoother and easier movement.

4. Cost: Castor wheels are simpler and cheaper than
powered wheels.

5. Compact Design: They require less space than the driven
wheels.

7o0f11

Figure 13 Castor Wheel
Lessons learnt:

- Accuracy in CAD designs dimensions.

- Ensuring purchase of the components having the
same dimensions as the designed model. This
involves checking the datasheets and seller’s
descriptions.

- Use of bolts and screws is encouraged over glue due
to its ease of removal in case of errors during
placement. Glue is difficult to remove and could alter
aesthetics, material or dimensions.

C. Navigation

1. Introduction

This section covers the navigation stack implemented on
a robotic system using ROS2. The navigation setup
integrates multiple software packages, allowing the robot to
autonomously move and explore its environment. The
primary goal of the navigation system is to enable the robot
to map, localize, and navigate in a simulated or real-world
environment using ROS2.

2. Navigation Packages Overview

The ROS2 navigation system relies on several key
packages to ensure robust and accurate movement. Below is
an overview of the key packages used:

Sllidar: This package integrates a 2D LIDAR for scanning
the environment. The LIDAR provides distance
measurements to obstacles, which are critical for mapping
and localization tasks.

Serial: The serial package opens a communication link
(typically via USB or UART) between the Raspberry Pi and
Arduino.Velocity commands, such as linear and angular

Joint Team 4

velocities, are sent from the Pi to the Arduino over this serial
connection.The Arduino processes these commands to
control the motors and sends encoder data back to the Pi for
odometry calculation.

Diff drive Arduino: This package interfaces with a
differential drive robot. It sends commands to the motors
based on velocity inputs, typically received from ROS2
navigation or teleoperation packages, and reads feedback
from encoders for odometry. It uses the serial package to
manage communication between the Raspberry Pi and the
Arduino.

Gazebo: A simulation environment used to simulate the
robot in a virtual environment, including sensors like LIDAR
and actuators like motors. Gazebo is tightly integrated with
ROS2, allowing real-time testing of navigation algorithms.

Figure 14 Robot in Gazebo

Rviz: A visualization tool in ROS2 that allows the user to
view the robot's sensor data, map, and planned trajectories in
real time. This is useful for debugging and tuning the
navigation stack.

Colcon: A build tool for ROS2. It is used to compile and
link the various packages within the navigation stack.

Teleop_twist: This package enables manual control of the
robot using a keyboard or joystick. It publishes velocity
commands (*/cmd_vel’) that are interpreted by the diff drive
package to control the robot's motors.

Twist_mux: This package multiplexes various sources of
velocity commands (“/cmd_vel’), ensuring that the correct
source (e.g., teleoperation or autonomous navigation) has
control over the robot at the appropriate time.

Nav2: The main package for ROS2 navigation. It provides
functionality for planning, controlling, and recovering the
robot's trajectory. Nav2 integrates sensors (like LIDAR) and
odometry data for localization, map updates, and

8of 11

autonomous path planning.

Slam Toolbox: This package handles Simultaneous
Localization and Mapping (SLAM), allowing the robot to
build a map of its environment while localizing itself within
that map. It’s crucial for operations in unknown or dynamic
environments.

ROS2 Control: Used to manage robot hardware resources
(such as motors and sensors), ensuring that commands from
navigation or teleoperation systems are properly executed on
the hardware side.

3.Robot Navigation Architecture

The ROS2 navigation stack is designed to enable
autonomous navigation by integrating perception, planning,
and control components. The navigation process consists of
the following phases:

1. Perception: The robot uses the RPlidar sensor to
gather distance data from its environment. This data
is processed by the SLAM Toolbox to generate a
2D occupancy grid map.

2. Localization: Once the map is generated, the robot
localizes itself within the environment. Localization
is based on the matching of LIDAR scans to the pre-
built map.ACML may be used.

3. Path Planning: Using Nav2, the robot determines a
path to a goal position. Nav2 uses algorithms
like,Dijkstra's or A* to plan optimal paths,
considering the known map and obstacles.

4. Control: The robot’s motors are controlled via the
diff drive Arduino package, which receives velocity
commands (from Nav2 or Teleop_twist) through
the Twist_mux. The robot then follows the planned
trajectory.

5. Recovery: Nav2 includes recovery behaviors in
case the robot encounters issues (e.g., getting
stuck). This could involve backing up, rotating in
place, or re-planning a new path.

4. Simulation and Testing

Testing the navigation system is performed in the Gazebo
simulation environment. Gazebo allows for creating
complex environments with obstacles, ramps, and walls,
simulating the robot's interaction with its surroundings.

In the simulation, the following components are tested:
LIDAR sensor accuracy: Ensures that obstacle detection
works as expected.
e Path planning: Verifies that Nav2 can compute
paths in various types of environments.
e Localization robustness: Tests how well the robot
localizes itself using SLAM Toolbox and odometry.
e Obstacle avoidance: Ensures the robot can avoid
obstacles in real-time by recalculating paths when

Joint Team 4

necessary.

All simulated outputs can be visualized in Rviz, providing
insight into sensor readings, map quality, and the robot's
trajectory.

Figure 15 Gazebo Simulation showing the robot and the map (game field)

5. Challenges

Several challenges are encountered when building the
navigation stack:

Sensor noise: LIDAR data can be noisy, which affects the
accuracy of mapping and localization.

Odometry drift: The encoders used by the diff drive
system can introduce errors over time, affecting the robot’s
localization accuracy.

Real-time performance: Ensuring that the entire
navigation stack runs in real time, especially with complex
environments and many obstacles, requires fine-tuning of the
control loop and sensor processing rates.

6. Conclusion

The ROS2 navigation stack leverages multiple packages
to create a robust, autonomous navigation system. The
integration of LIDAR-based perception, SLAM for mapping,
and differential drive control allows the robot to navigate its
environment efficiently. Future work may involve
optimizing the system for hardware deployment and
improving recovery behaviors in complex environments.

D. Experimental Results

To ensure the reliability and performance of the ROOK
Droid, Team 4 carried out extensive testing, including unit
tests, integration tests, and simulations using ROS2, Rviz,
and Gazebo, as well as real-world field trials.

90f11

Lidar Map

i » Navigation
Sensor Data Generation

Planner

Autonomous
Path Execution

Robot Operating System (ROS 2)

Figure 16 ROS2 Interaction

1. Testing Procedures

1. Unit Testing: Individual components like the motors,
sensors (RP Lidar), and motor drivers (L298N) were tested
independently. This included:

- Motor Testing: The motors were tested under different
speeds, ranging from 100 RPM to 200 RPM, with feedback
from encoders to validate speed control and accuracy.

- Sensor Testing: The RP Lidar was tested for its
mapping accuracy in static and dynamic environments. The
sensor was validated by comparing its readings with known
distances and obstacles on the game field.

2. Integration Testing: Once individual components were
tested, the integration of the mobile platform and navigation
system was done. Key aspects tested included:

- Synchronisation between motor control and real-time
mapping.

- Power stability from LiPo batteries and the power bank
for smooth operation without unexpected shutdowns or
overheating.

- Closed-loop control of the motors using encoder
feedback for precision and path accuracy.

3. Simulation: Before deploying in real-world
environments, the team utilised Gazebo and Rviz simulations
to test the robot's mapping and navigation capabilities. The
robot was simulated navigating complex game fields with
obstacles, testing its path-planning algorithms and
responsiveness to environmental changes.

- Gazebo Simulation: Focused on physical interactions
like obstacle avoidance, smooth movement, and collision
detection.

- Rviz: Used for visualising Lidar-based mapping and
real-time sensor data to assess the navigation System’s
accuracy.

2. Testing Outcomes

- Motor Performance: At lower speeds (100 RPM), the
motor encoders provided closely matching readings,
ensuring reliable movement. However, at higher speeds (200
RPM), encoder discrepancies increased, requiring

Joint Team 4

calibration. The motor restart issue at longer distances was
identified, which temporarily fixed encoder inconsistencies.

- Power Supply: The Lithium-ion battery and power bank
were tested for voltage stability under varying loads. Both
power sources provided adequate power without any
significant dips, allowing consistent performance in the
motors and Raspberry Pi.

- Mapping and Navigation: The RP Lidar produced highly
accurate maps of the game field in both simulation and
physical tests, allowing the robot to navigate autonomously
with minimal error. In real-world tests, the robot successfully
detected and avoided obstacles, demonstrating the efficacy
of the integrated mapping and control systems.

3. Reliability and Robustness

- Robustness Analysis: The acrylic chassis proved durable
during field tests, showing no signs of warping or damage
under stress. The motor brackets provided stable mounting,
minimising vibrations that could lead to component wear
over time.

- Reliability Modelling: Based on the testing data, failure
points were identified in the motor control system at higher
speeds, specifically related to encoder accuracy. To mitigate
this, the team implemented calibration strategies and
adjusted the control algorithms to improve speed
synchronisation.

- Failure Analysis: The team performed failure analysis on
key components such as the motors and power system. No
major failures were detected, but minor issues like motor
speed discrepancies and temporary power fluctuations were
noted and addressed in the design.

The robot's performance met the expected design criteria,
with minor improvements required to enhance speed
accuracy at higher RPMs and to further optimise power
management during extended operation.

10 of 11

Figure 17 Robot under game field testing (navigation) before the
competition

E. Acknowledgements

Joint team 4 acknowledges the support from other teams,
students and staff for their assistance through trainings,
guidance, problem solving and support throughout the
process.

F. References

[1] DATASHEET Raspberry Pi 4 Model B Release 1.1 March 2024
Copyright 2024 Raspberry Pi (Trading) Ltd. All rights reserved.
raspberry-pi-4-datasheet.pdf (raspberrypi.com)

[2] Articulated Robotics Building a Mobile Robot.
https://youtube.com/playlist?list=PLunhgkrRNRh Y Aff\V8JDiFOatQ
XuU-NnxT&si=Pa_dVk3U2P824uX5

[3] ROOK DROID and ECHO teams workspace for the Robotics Dojo
2024 competition. This workspace contains several key packages and
resources to operate and simulate the robot.
https://github.com/Collins-Omariba/ROOK _ros_ws

https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://youtube.com/playlist?list=PLunhqkrRNRhYAffV8JDiFOatQXuU-NnxT&si=Pa_dVk3U2P824uX5
https://youtube.com/playlist?list=PLunhqkrRNRhYAffV8JDiFOatQXuU-NnxT&si=Pa_dVk3U2P824uX5
https://github.com/Collins-Omariba/ROOK_ros_ws

Joint Team 4 11 of 11

G. Appendix

d

“Riam
Figure 21 Chassis Design Right View

Figure 18 Chassis Design Top View -

Figure 22 Game field

"sotam
Figure 19 Chassis Design Bottom View

"rrond
Figure 20 Chassis Design Front View

