
Joint Team 4 1 of 11

Joint Team 4 Technical Design Paper for the

Robotics Dojo Competition 2024

Felix Ronoh, Onami Omariba Collins, Onyapidi Jeremiah, Hillary Murimi and Lukundo Okemba (R.O.O.K. Droid)

Matiko Maroa and Nindo Emmanuel (ECHO)

A. Design Strategy

The design strategy for the ROOK Droid project involved

a collaborative effort between Joint Team 4, which consisted

of 5 members from the ROOK Droid team working on the

mobile platform and 2 members from the Echo team

handling navigation. This joint team brought together

expertise in both mechanical design, electrical design and

software development to address the competition challenges

efficiently.

General Approach to Competition Challenges:

1. Modular Design and Specialisation: The team's

approach was based on dividing the robot’s development into

two core areas: the mobile platform and the navigation

system. This modular strategy allowed for focused work on

each aspect, ensuring that the platform provided robust

mechanical support, while the navigation system was

optimised for real-time mapping and decision-making. This

clear division of tasks enhanced both development speed and

reliability.

2. Mapping and Navigation: The navigation system, led by

the Echo team, used RP Lidar for precise environmental

mapping. Focusing on real-time obstacle detection and

autonomous movement, the robot was designed to make

quick and accurate decisions during the competition. The RP

Lidar provided 360-degree scanning, ensuring that the robot

could understand its environment and navigate effectively

without human intervention.

3. Testing and Optimization: The team allocated

significant time to testing and refining the mobile platform

and navigation. The navigation algorithms were tested using

ROS2 simulations (Rviz and Gazebo) and real game field

trials, ensuring the system’s capability and reliability in

dynamic environments. The mobile platform, designed by

the ROOK team, was tested for stability, durability, and

smooth movement, allowing the robot to perform efficiently

under competition conditions.

4. Reliability vs. Complexity

- Reliability Over Complexity: The team opted for

reliable, proven technologies that ensured system stability.

For instance, while more advanced sensors or processors like

the NVIDIA Jetson could increase capability, they would

introduce complexity and potential failure points. The

decision to use the Raspberry Pi 4 balances computational

power with reliability, as it can handle tasks like running

ROS2 without overwhelming the system.

- Motor Control Simplicity: The mobile platform

employed closed-loop control using motor encoders for

precise movement. This allowed the robot to maintain

accurate speed and position control without introducing the

complexities of open-loop systems. The use of an L298N

motor driver ensured adequate power delivery without

unnecessary complications.

5. Capability vs. Robustness

- Capability in Navigation: The navigation team focused

on enhancing the robot’s mapping capability, using RP Lidar

to create detailed and real-time maps of the environment.

This capability allowed the robot to navigate complex game

field paths and avoid obstacles autonomously. The team

maintained a robust system by avoiding unnecessary features

that could compromise stability.

- Robust Mobile Platform: The ROOK team emphasised

the durability and stability of the mobile platform. The

chassis was made from lightweight acrylic, ensuring the

robot was both stable and energy-efficient. A round chassis

design was used to improve manoeuvrability, allowing the

robot to rotate easily in tight spaces, further enhancing its

navigation performance.

6. Testing for Reliability

Given the limited preparation time, the team dedicated

resources to testing and improving the reliability of the

existing systems. The team ensured that the robot can operate

consistently under competition conditions by continuously

testing the integration of the mobile platform and navigation

systems in both simulations and real-world environments.

This approach minimised the risk of failure, as potential

Joint Team 4 2 of 11

issues were identified and addressed early in the

development process.

B. Vehicle Design

1. Design process

CAD design (Mechanical design) – Autodesk Inventor was

used to design the parts.

Figure 1 CAD Design Assembly

Electrical circuit design was done.

Budget preparation – bill of materials required was

prepared and forwarded for purchase.

Purchase of components – components were purchased and

distributed.

Mechanical components fabrication - laser cutting of the

acrylic, the parts were glued together,

Electrical components circuit design – electrical circuit

connection was done (motors, motor driver, Arduino,

Raspberry Pi, Lithium-Ion batteries, power bank)

Integration of mechanical and electrical components -

wheels, motors, couplers, motor brackets, batteries,

Arduino and chassis (temporary robot assembly) was done

Move the robot using the microcontroller (first testing) –

the robot was first moved to test wheel alignment, motors

condition and overall assembly.

Navigation development - The navigation stack was

implemented on a robotic system using ROS2. The

navigation setup integrated multiple software packages,

allowing the robot to autonomously move and explore its

environment. The primary goal of the navigation system was

to enable the robot to map, localize, and navigate in a

simulated or real-world environment using ROS2.

Integration of mobile platform and navigation – lidar

addition, map creation (mobile platform and navigation

team working together).

Final assembly - permanent robot assembly

Testing - game field testing, mapping and navigation

Finalising - final fixes and perfecting the navigation.

Figure 2 Final Robot assembly (tested)

2. Methodology and design result

Design considerations - During the design, several

considerations were applied to ensure that the right

components were chosen for the robot. Each part used is

discussed below:

Raspberry Pi

Raspberry Pi is the brain for the robot. The following are

key considerations for choosing a computer for this kind of

project:

Figure 3 Raspberry Pi

Why Raspberry Pi: The Raspberry Pi 4 was the

recommended option due to its ubiquity, relatively low cost,

and strong community support. While simpler robots might

run on a smaller chip like an Arduino, the Pi is powerful

enough to handle more complex software, such as ROS

(Robot Operating System), which requires more computing

Joint Team 4 3 of 11

power. ROS2 was used in this project and it required a

powerful chip like Raspberry Pi.

Power: The Raspberry Pi can be powered by a 5V source,

making it convenient for robotic applications. For other

options like laptops or the Intel NUC, larger batteries may

be required.

Alternatives: Single-board computers like the NVIDIA

Jetson, which could be better for GPU-heavy tasks like

machine learning. A laptop or an Intel NUC can also be

considered for more demanding projects, but these options

could be more complex due to power and size constraints.

Power Considerations

Devices are rated for the maximum power they can draw,

and components must work within these limits to avoid

overheating or damage.

Power sources used are Power bank (for microcontroller)

and LiPo (for motors).

The following are the key concepts and considerations for

powering the robot:

1. Voltage Considerations

Operating voltage - It was essential to consider the

operating voltage of each device.

5 volts: For microcontrollers (Raspberry Pi and Arduino)

and USB devices. Power bank used since it outputs a stable

5V.

12 volts: For the DC motors, which required higher power.

LiPo was used.

2. Current Considerations

Current Draw - It was essential to estimate the total current

draw of all the components in the robot to choose the right

power supply and regulators.

For example, Raspberry Pi and lidar draw up to 5 amps.

Motor Current: Motors draw different amounts of current

based on load and torque. The stall current is the maximum

current drawn when the motor is under maximum load, and

it is crucial to ensure the motor driver can handle it.

3. Battery Choice

Battery Selection: The choice for our mobile robot was a

Lithium-Ion Cylindrical Battery. Each is rated 3.7V.

Considerations include:

- Lower cost than other alternatives like LiPo battery.

- Lighter

- Easy to recharge and requires less monitoring

compared to LiPO which is sensitive and requires

regular monitoring.

Figure 4 Lithium-Ion Batteries

4. Wiring and Connectors

Ensured that all wiring and connectors were rated for the

currents required. For example, breadboards and jumper

wires should only be used for very low current, while

heavier-duty connectors like XT60 are required for high-

current applications.

 5. Power Bank Choice

Power bank was used to power the Raspberry Pi. The

following Product Power Parameters were considered:

Capacity: 20000mAh (74Wh)

Input 1(Micro-USB): 5V/2A

Input 2(Type-C): 5V/3A

Output 1(USB-A): 5V/3A (Max)

Output 2(USB-A): 5V/3A (Max)

Output 3(Type-C): 5V/3A (Max)

The output did not exceed 5V / 3A which is safe for the

Raspberry Pi.

Figure 5 Power Bank Powering Raspberry Pi

5. Safety Features

Joint Team 4 4 of 11

 - Power switch: Allowed for safe disconnecting of the

battery.

 - Fuses: Protected the circuit from short circuits by

breaking the circuit if too much current flowed, preventing

damage and fire hazards.

Motors

Designing a motor system for the robot involved several

key considerations and calculations to ensure optimal

performance. These considerations were broken down into

several layers, each contributing to the motor's overall

operation and control.

1. Motor Selection

 - Motor Type: Different types of motors (for example:

brushless, stepper) require varying control methods, so it

was essential to choose the right type for the application.

We chose a DC 12V 200 rpm motor.

Figure 6 Motor Selected (DC 12V 200 RPM with Encoder Module)

 - Voltage and Current Requirements: Motors typically

required higher voltage and current than what a

microcontroller could provide. For example, a 12V DC

motor was used and the motor's current rating was

considered to avoid overloading the control circuitry.

 -Motor with Encoder: Motors equipped with encoders

provide feedback on speed and position, enabling closed-

loop control for more accurate and stable motor behaviour.

We chose a motor with encoder which made speed and

position control easier.

2. Motor Control

 - Open-Loop Control: This simpler method maps the

desired speed or position to a specific PWM value, but it

lacks feedback, which makes it less accurate, especially

under varying loads. Pulse Width Modulation (PWM) is

used to control motor speed by modulating the on/off signal

to the motor. The duty cycle of the PWM signal determines

the motor's effective voltage and, thus, its speed.

Duty Cycle = (On Time / Total Time)

The motor's effective voltage is proportional to the PWM

duty cycle. A higher duty cycle means the motor will run

faster, and a lower duty cycle means it will run slower.

 - Closed-Loop Control (Feedback Control): To achieve

more precise control, closed-loop feedback is necessary.

Encoders on the motor provide real-time speed or position

data, which is used to adjust the PWM signal dynamically.

In a closed-loop system, the motor's actual performance is

measured, and adjustments are made to match the desired

performance.

The most common closed-loop control method is

Proportional-Integral-Derivative (PID) control. The

controller adjusts the motor's input based on the difference

between the target speed (or position) and the actual

measured value.

The motor's speed is calculated based on encoder feedback,

which sends pulses corresponding to the motor's rotation.

By counting the number of pulses in a given time frame, the

controller can determine the motor’s speed.

The encoder produces a certain number of pulses per

revolution (PPR). For example, if the encoder gives 100

pulses per motor revolution, and the gear ratio multiplies

the output revolutions, you can calculate the total output

revolutions using the formula:

Speed (RPM) = (Encoder Counts / PPR) x Gear Ratio

This equation converts the encoder feedback into the

motor's speed in revolutions per minute.

Closed- loop control was used to control the motors.

3. Speed, Torque and Load Considerations

The torque the motor generates depends on the current it

draws and the mechanical load it encounters. The motor's

torque needs to be considered if sufficient for the expected

load, considering factors like gear ratios, friction, and

inertia.

Used a 200-rpm dc motor. Encoders used to control its

speed. Compared to a 130-rpm motor, it was better to have

a higher speed motor whose speed could be reduced than a

low-speed motor (130 rpm) whose speed cannot be

increased beyond the rated value.

Suppose the 65mm wheel diameter, and max speed = wr,

Then.

w_1 = 130*2π/60 = 13.61 rad/s

w_2 = 200*2π/60 = 20.94 rad/s

max velocity_1 = w1xr = 0.44m/s

max velocity_2 = w2xr = 0.68m/s

4. Power

The motor and the motor driver should have a sufficient and

stable power supply. For example, the L298N motor driver

has a voltage drop that needs to be accounted for, meaning

the motor may receive less than the input voltage.

Joint Team 4 5 of 11

Lithium-ion batteries was selected to power the motors,

which was chosen for their lower cost and met power

requirements of the motors.

5. Communication

Serial (UART): Used to send speed commands to the

Arduino motor controller from the Raspberry Pi.

CAN, I2C, or PWM can also be used in other setups

depending on the motor controller.

Motor Driver

A motor driver was essential for controlling the motor's

speed and direction. Key considerations include:

 - Voltage Matching: The motor driver matched the

motor's voltage requirement (12V for motor chosen).

 - Current Capacity: The driver supported the current

requirements of the motor. For example, the L298N motor

driver used, supports 2A of continuous current with spikes

up to 3A.

Figure 7 Motor Driver (LN298N)

RP Lidar

RP Lidar was the primary sensor used in the robot to map

its environment, such as a game field.

Mapping was essential for:

- Environmental Awareness: Mapping enabled the robot to

understand and navigate its environment efficiently,

avoiding obstacles and planning paths allowing it to reach

specific points in the game field and navigate effectively.

- Autonomous Movement: With a map of its surroundings,

the robot could move autonomously, making real-time

decisions about where to go or how to react to dynamic

changes in its environment.

- Task Optimization: Mapping allowed for more precise and

optimised task execution, whether it was navigating a maze,

following a path, or interacting with objects on the game

field.

Figure 8 RP Lidar

Why use RP Lidar?

- High Accuracy: RP Lidar provides accurate 360-degree

scanning of the environment, giving the robot a detailed

map of its surroundings.

- Low Latency: It offers fast real-time updates, which is

essential for responsive movements in dynamic

environments.

- Lightweight and Compact: It is small and light, which

minimises the weight burden on the robot, allowing for

faster and more agile movement.

- It is also affordable.

Chassis

The chassis supports the robot's electrical and electronic

components. It was made from acrylic and is round in

shape.

Figure 9 Chassis designed parts file for Laser Cutting

Acrylic was used because it is:

Joint Team 4 6 of 11

- Lightweight: Acrylic is much lighter than metals like steel

or aluminium, reducing the overall weight of the robot,

which helps in mobility and energy efficiency.

- Cost-Effective: Acrylic is relatively inexpensive, making

it a cheaper option for the competition's small budget.

- Non-Conductive: Acrylic is a poor conductor, preventing

electrical shorts or interference with electronic components.

- Ease of Machining: Acrylic is easy to cut, shape, and drill,

allowing for greater flexibility in design and quicker

assembly. It was cut using a laser cutting machine which

was fast and efficient. Assembling was also easy and quick

using glue.

Why round in shape?

- Improved Manoeuvrability: A round chassis allowed for

better movement in tight spaces since the corners won't get

caught on obstacles. This shape is necessary as the robot

needs to rotate frequently in the game field.

- Even Weight Distribution: A round design helped

distribute weight more evenly, improving balance and

stability, during turning or when carrying loads.

- Optimised for omnidirectional movement as the robot

used castor wheels making smooth turns possible.

Couplers

Couplers were used to connect the motors and rubber-

driven wheels. They were used because of:

- Efficient Power Transfer: Couplers ensure efficient

transmission of torque from the motor to the wheels,

minimising energy loss.

- Vibration Dampening: They help to absorb small

misalignments and vibrations between the motor shaft and

wheels, prolonging the lifespan of both the motor and the

wheels.

- Couplers make it easier to align components (wheels and

motor shafts) that may not have perfectly matching shafts

sizes, improving flexibility in the mechanical design.

Figure 10 Coupler

Motor Brackets

Motor brackets were used to mount the motors securely on

the chassis. They were used for:

- Stability: Properly mounting the motors ensures that they

stay securely in place, even when the robot is moving over

uneven terrain or at high speeds.

- Alignment: Motor brackets help to align the motor

correctly with other components, such as wheels and

couplers, ensuring smooth and efficient operation.

- Vibration Reduction: A secure mount reduces vibrations

that can cause wear and tear on both the motor and the

chassis, improving the robot’s durability.

- Brackets provide flexibility in positioning motors,

allowing adjustment of motor placement based on the

robot's overall layout.

Figure 11 Motor Bracket

Rubber Wheels

Driven by the DC motors to move the robot from one point

to another. 65 cm in size. Chosen because of its ease to be

coupled with the motors using couplers. Its size (65 cm

diameter) was ideal for stability and lidar mapping (not too

high or too low).

Joint Team 4 7 of 11

Figure 12 Rubber Wheels

Castor Wheels

Two castor wheels were used. Castor wheels were used

because:

1. Manoeuvrability and free rotation: Castor wheels allowed

the robot to turn smoothly without needing all wheels to be

powered. This was useful for multi-directional movement.

2. Stability: They provide additional support and stability,

as the robot had two main drive wheels, preventing the

robot from tipping over.

3. Reduced Friction: Castor wheels can swivel in any

direction, minimising the friction that could occur when the

robot turns, allowing smoother and easier movement.

4. Cost: Castor wheels are simpler and cheaper than

powered wheels.

5. Compact Design: They require less space than the driven

wheels.

Figure 13 Castor Wheel

Lessons learnt:

- Accuracy in CAD designs dimensions.

- Ensuring purchase of the components having the

same dimensions as the designed model. This

involves checking the datasheets and seller’s

descriptions.

- Use of bolts and screws is encouraged over glue due

to its ease of removal in case of errors during

placement. Glue is difficult to remove and could alter

aesthetics, material or dimensions.

C. Navigation

1. Introduction

This section covers the navigation stack implemented on

a robotic system using ROS2. The navigation setup

integrates multiple software packages, allowing the robot to

autonomously move and explore its environment. The

primary goal of the navigation system is to enable the robot

to map, localize, and navigate in a simulated or real-world

environment using ROS2.

2. Navigation Packages Overview

The ROS2 navigation system relies on several key

packages to ensure robust and accurate movement. Below is

an overview of the key packages used:

Sllidar: This package integrates a 2D LIDAR for scanning

the environment. The LIDAR provides distance

measurements to obstacles, which are critical for mapping

and localization tasks.

Serial: The serial package opens a communication link

(typically via USB or UART) between the Raspberry Pi and

Arduino.Velocity commands, such as linear and angular

Joint Team 4 8 of 11

velocities, are sent from the Pi to the Arduino over this serial

connection.The Arduino processes these commands to

control the motors and sends encoder data back to the Pi for

odometry calculation.

Diff drive Arduino: This package interfaces with a

differential drive robot. It sends commands to the motors

based on velocity inputs, typically received from ROS2

navigation or teleoperation packages, and reads feedback

from encoders for odometry. It uses the serial package to

manage communication between the Raspberry Pi and the

Arduino.

Gazebo: A simulation environment used to simulate the

robot in a virtual environment, including sensors like LIDAR

and actuators like motors. Gazebo is tightly integrated with

ROS2, allowing real-time testing of navigation algorithms.

Figure 14 Robot in Gazebo

Rviz: A visualization tool in ROS2 that allows the user to

view the robot's sensor data, map, and planned trajectories in

real time. This is useful for debugging and tuning the

navigation stack.

Colcon: A build tool for ROS2. It is used to compile and

link the various packages within the navigation stack.

Teleop_twist: This package enables manual control of the

robot using a keyboard or joystick. It publishes velocity

commands (`/cmd_vel`) that are interpreted by the diff drive

package to control the robot's motors.

Twist_mux: This package multiplexes various sources of

velocity commands (`/cmd_vel`), ensuring that the correct

source (e.g., teleoperation or autonomous navigation) has

control over the robot at the appropriate time.

Nav2: The main package for ROS2 navigation. It provides

functionality for planning, controlling, and recovering the

robot's trajectory. Nav2 integrates sensors (like LIDAR) and

odometry data for localization, map updates, and

autonomous path planning.

Slam Toolbox: This package handles Simultaneous

Localization and Mapping (SLAM), allowing the robot to

build a map of its environment while localizing itself within

that map. It’s crucial for operations in unknown or dynamic

environments.

ROS2 Control: Used to manage robot hardware resources

(such as motors and sensors), ensuring that commands from

navigation or teleoperation systems are properly executed on

the hardware side.

3.Robot Navigation Architecture

The ROS2 navigation stack is designed to enable

autonomous navigation by integrating perception, planning,

and control components. The navigation process consists of

the following phases:

1. Perception: The robot uses the RPlidar sensor to

gather distance data from its environment. This data

is processed by the SLAM Toolbox to generate a

2D occupancy grid map.

2. Localization: Once the map is generated, the robot

localizes itself within the environment. Localization

is based on the matching of LIDAR scans to the pre-

built map.ACML may be used.

3. Path Planning: Using Nav2, the robot determines a

path to a goal position. Nav2 uses algorithms

like,Dijkstra's or A* to plan optimal paths,

considering the known map and obstacles.

4. Control: The robot’s motors are controlled via the

diff drive Arduino package, which receives velocity

commands (from Nav2 or Teleop_twist) through

the Twist_mux. The robot then follows the planned

trajectory.

5. Recovery: Nav2 includes recovery behaviors in

case the robot encounters issues (e.g., getting

stuck). This could involve backing up, rotating in

place, or re-planning a new path.

4. Simulation and Testing

Testing the navigation system is performed in the Gazebo

simulation environment. Gazebo allows for creating

complex environments with obstacles, ramps, and walls,

simulating the robot's interaction with its surroundings.

In the simulation, the following components are tested:

LIDAR sensor accuracy: Ensures that obstacle detection

works as expected.

● Path planning: Verifies that Nav2 can compute

paths in various types of environments.

● Localization robustness: Tests how well the robot

localizes itself using SLAM Toolbox and odometry.

● Obstacle avoidance: Ensures the robot can avoid

obstacles in real-time by recalculating paths when

Joint Team 4 9 of 11

necessary.

All simulated outputs can be visualized in Rviz, providing

insight into sensor readings, map quality, and the robot's

trajectory.

Figure 15 Gazebo Simulation showing the robot and the map (game field)

5. Challenges

Several challenges are encountered when building the

navigation stack:

Sensor noise: LIDAR data can be noisy, which affects the

accuracy of mapping and localization.

Odometry drift: The encoders used by the diff drive

system can introduce errors over time, affecting the robot’s

localization accuracy.

Real-time performance: Ensuring that the entire

navigation stack runs in real time, especially with complex

environments and many obstacles, requires fine-tuning of the

control loop and sensor processing rates.

6. Conclusion

The ROS2 navigation stack leverages multiple packages

to create a robust, autonomous navigation system. The

integration of LIDAR-based perception, SLAM for mapping,

and differential drive control allows the robot to navigate its

environment efficiently. Future work may involve

optimizing the system for hardware deployment and

improving recovery behaviors in complex environments.

D. Experimental Results

To ensure the reliability and performance of the ROOK

Droid, Team 4 carried out extensive testing, including unit

tests, integration tests, and simulations using ROS2, Rviz,

and Gazebo, as well as real-world field trials.

Figure 16 ROS2 Interaction

1. Testing Procedures

1. Unit Testing: Individual components like the motors,

sensors (RP Lidar), and motor drivers (L298N) were tested

independently. This included:

 - Motor Testing: The motors were tested under different

speeds, ranging from 100 RPM to 200 RPM, with feedback

from encoders to validate speed control and accuracy.

 - Sensor Testing: The RP Lidar was tested for its

mapping accuracy in static and dynamic environments. The

sensor was validated by comparing its readings with known

distances and obstacles on the game field.

2. Integration Testing: Once individual components were

tested, the integration of the mobile platform and navigation

system was done. Key aspects tested included:

 - Synchronisation between motor control and real-time

mapping.

 - Power stability from LiPo batteries and the power bank

for smooth operation without unexpected shutdowns or

overheating.

 - Closed-loop control of the motors using encoder

feedback for precision and path accuracy.

3. Simulation: Before deploying in real-world

environments, the team utilised Gazebo and Rviz simulations

to test the robot's mapping and navigation capabilities. The

robot was simulated navigating complex game fields with

obstacles, testing its path-planning algorithms and

responsiveness to environmental changes.

 - Gazebo Simulation: Focused on physical interactions

like obstacle avoidance, smooth movement, and collision

detection.

 - Rviz: Used for visualising Lidar-based mapping and

real-time sensor data to assess the navigation system’s

accuracy.

2. Testing Outcomes

- Motor Performance: At lower speeds (100 RPM), the

motor encoders provided closely matching readings,

ensuring reliable movement. However, at higher speeds (200

RPM), encoder discrepancies increased, requiring

Joint Team 4 10 of 11

calibration. The motor restart issue at longer distances was

identified, which temporarily fixed encoder inconsistencies.

- Power Supply: The Lithium-ion battery and power bank

were tested for voltage stability under varying loads. Both

power sources provided adequate power without any

significant dips, allowing consistent performance in the

motors and Raspberry Pi.

- Mapping and Navigation: The RP Lidar produced highly

accurate maps of the game field in both simulation and

physical tests, allowing the robot to navigate autonomously

with minimal error. In real-world tests, the robot successfully

detected and avoided obstacles, demonstrating the efficacy

of the integrated mapping and control systems.

3. Reliability and Robustness

- Robustness Analysis: The acrylic chassis proved durable

during field tests, showing no signs of warping or damage

under stress. The motor brackets provided stable mounting,

minimising vibrations that could lead to component wear

over time.

- Reliability Modelling: Based on the testing data, failure

points were identified in the motor control system at higher

speeds, specifically related to encoder accuracy. To mitigate

this, the team implemented calibration strategies and

adjusted the control algorithms to improve speed

synchronisation.

- Failure Analysis: The team performed failure analysis on

key components such as the motors and power system. No

major failures were detected, but minor issues like motor

speed discrepancies and temporary power fluctuations were

noted and addressed in the design.

The robot's performance met the expected design criteria,

with minor improvements required to enhance speed

accuracy at higher RPMs and to further optimise power

management during extended operation.

Figure 17 Robot under game field testing (navigation) before the

competition

E. Acknowledgements

Joint team 4 acknowledges the support from other teams,

students and staff for their assistance through trainings,

guidance, problem solving and support throughout the

process.

F. References

[1] DATASHEET Raspberry Pi 4 Model B Release 1.1 March 2024

Copyright 2024 Raspberry Pi (Trading) Ltd. All rights reserved.
raspberry-pi-4-datasheet.pdf (raspberrypi.com)

[2] Articulated Robotics - Building a Mobile Robot.

https://youtube.com/playlist?list=PLunhqkrRNRhYAffV8JDiFOatQ
XuU-NnxT&si=Pa_dVk3U2P824uX5

[3] ROOK DROID and ECHO teams workspace for the Robotics Dojo

2024 competition. This workspace contains several key packages and
resources to operate and simulate the robot.

https://github.com/Collins-Omariba/ROOK_ros_ws

https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://youtube.com/playlist?list=PLunhqkrRNRhYAffV8JDiFOatQXuU-NnxT&si=Pa_dVk3U2P824uX5
https://youtube.com/playlist?list=PLunhqkrRNRhYAffV8JDiFOatQXuU-NnxT&si=Pa_dVk3U2P824uX5
https://github.com/Collins-Omariba/ROOK_ros_ws

Joint Team 4 11 of 11

G. Appendix

Figure 18 Chassis Design Top View

Figure 19 Chassis Design Bottom View

Figure 20 Chassis Design Front View

Figure 21 Chassis Design Right View

Figure 22 Game field

