[Joint team 3]

1of9

Technical Design Paper
for the Robotics Dojo Competition 2024

First A. Amos Oniare, Second B. Dismas Karimi, Third C. Gareth Kipkoech, and Fourth D. Fundi Brian (KNIGHTS)
First A. Daniel Karume, Second B. Joseph Kirika, Third C. Peaches Njenga, Fourth D. Geoffrey Chege Kimani, and Fifth
E. Irke Konzolo (Pentagon).

L INTRODUCTION

Robotics Dojo is a project-based robotics training
program under the AFRICA-ai-JAPAN Project at the Jomo
Kenyatta University of Agriculture and Technology. Each
year, the program holds a competition that challenges
student teams to come up with a robot that can perform a
set of requirements accurately and quickly. This year’s topic
is Autonomous Mobile Robots. A robot is to be made that
can autonomously navigate the competition’s environment
and pass through given checkpoints to a destination. The
robot’s performance is to be evaluated based on its speed of
doing the tasks and how accurately it passes through the
checkpoints.

A. Design Strategy

Some guidelines and requirements are provided by Robotics
Dojo:

1. Itisrequired to use a lidar
. Itis required to use ROS2
3. Dueto requirement (2) above, it is required to
use a raspberry pi
4. The build is broken down to two parts: mobile
platform and navigation

Upon brainstorming, the following systems are required for
an autonomous mobile robot:

Drivetrain and propulsion

Robot frame

Wheel mounts and Wheels

Control scheme

Environment detection device

Power supply system

Mapping, Localization, and Navigation

Nk =

With the above two, some design decisions are made as
discussed below:

Drivetrain

For simplicity, cost minimization and rapidity of
production, it was decided that the robot drivetrain should
employ two-wheeled differential drive. Further, it was
decided that the powered wheels should be placed
equidistant from the front and back ends of the chassis, for
compactness and to minimize turning radius. As such, the

powered wheels are minimized to just two with requirement
for two unpowered support caster wheels.

To power the driven wheels, it was decided to have two
motors, as opposed to a single motor with a differential.
This was to minimize mechanical complexity. The motors
chosen were brushed DC motors. It was decided that the
motors chosen should have built-in rotary encoders, to
minimize work during assembly. The calculation of the
required motor specifications is detailed in the Mobile
Platform subtitle in the Vehicle Design section.

Robot Frame

The frame design chosen is laser-cut acrylic. The primary
motivation was that acrylic and a laser-cutting machine
were provided. This minimized cost incurred in building the
frame. Other pros to this construction include lightweight
construction and clean finish.

Inspiration was drawn from Turtlebot3 Burger. It was
decided that the robot shall have three stacked
compartments and each compartment being of a small area.
This was to reduce the breadth of the robot for
maneuverability. The heavy battery and motors were to be
placed in the lowest compartment to lower the center of
mass for stability. [1]

Wheel mounts and Wheels

Having chosen laser-cut acrylic, it was also decided that the
wheel mounts should also be laser-cut.

To avoid traversal difficulty caused by uneven floors, it was
decided that the wheels used should be rubber with small
spikes for traction. This choice sacrifices smooth surface
traction for rough surface traction but this was considered a
worthwhile trade-off since the wooden floor of the play area
is not tiled but rather rough wood. The wheels that meet
these requirements were found to be 85mm diameter 36mm
breadth.

Control Scheme

It was decided that the mobile platform was to be controlled
by a microcontroller. An arduino mega was chosen,
primarily because of availability. Another pro that
reinforced the choice is its large number of Input/Output
pins, including pins with hardware interrupts.

[Joint team 3]

For the navigation, since ROS2 is required, Raspberry Pi 4
was provided by Robotics Dojo. This choice was justified
by the Pi 4’s speed and comparatively low power
requirements.

Environment Awareness Device

It was required to employ the use of a Lidar. For this,
Robotics Dojo provided the RPLidar AIMS, a cheap
entry-level lidar with a working range of 0.3-12m.

Power Supply System

It was decided to have two independent power sources,
supplying the mobile platform and navigation respectively.
To supply the navigation system (Raspberry Pi 4) an 18W
USB power bank was chosen as it was already owned by a
team member, and to supply the mobile platform (Arduino
Mega, Lidar, motors, and encoders) a 2-cell
Lithium-Polymer battery is chosen. Lithium-ion cells were
considered for the mobile platform but were decided against
due to reliability concerns of the locally available
lithium-ion cells, raised by former Robotics Dojo
participants. The calculation of the required battery capacity
is detailed in the Mobile Platform subtitle in the Vehicle
Design section.

Mapping, Localization, and Navigation

ROS2 provides packages for mapping and localization
(SLAM toolbox) as well as localization and navigation
(Navigation2). It was decided to make use of these
packages rather than writing new custom algorithms. This
was to save time and engineering effort. These systems are
discussed in more detail in the Navigation subtitle in the
Vehicle Design section.

The following steps were followed to create the robot:

® A 3-dimensional model of the robot was made in
Computer Aided Design (CAD) software. The
dimensions were made so as to comply with the
height limit of 300mm.

o 2-dimensional drawings of each part were
generated and placed on a single pdf file for
laser-cutting.

o A Bill of Materials (BOM) was generated.

e The total power consumption of the robot is
approximated using power ratings of each device
to determine the ideal battery and wire gauge to
use safely. The items are procured.

e The robot frame was assembled.

o The electrical and electromechanical devices were
tested, one at a time, to ensure correct working
before assembling them in the robot. Firmware for
the Arduino Mega was written to allow control of
the motors and encoders via the Serial interface.

20f9

o The electronics were assembled into the frame of
the robot.

e The robot was controlled manually using the
Raspberry Pi via the Serial interface.

B. Vehicle Design

As stated earlier, the robot design was split into two
sections, the Mobile Platform and Navigation. Autodesk
Inventor, a CAD software, was used to first develop a
model of the Robot body which was then laser cut and
assembled before adding in the other components of the
mobile and navigation section. A 3-Dimensional model of
the robot is as shown below in three views:

[Joint team 3]

=y
I

/]
e

As discussed earlier, the frame of the robot is made up of
3 layers supported by 4 supports for each layer. The layers
allowed enough space for the hardware and other electrical
components to be placed without congestion and reduce the
risk of short-circuits. The supports ensure the body is rigid
and that each layer is parallel to the one above or below it.
Stability was maximized by lowering the center of mass by
placing the heavy components, such as the battery, and
motors, on the lowest layer. It was also designed with 4
wheels, 2 being castor wheels and the other 2 are part of the
differential drive system. This increases stability of the
robot and reduces the weight supported by each wheel
hence reducing the structural stresses on the wheel supports.
The differential drive wheels were placed along the axis
passing through the center of the base to reduce the radius
of turning on the spot and allow faster turning which makes
the robot more maneuverable.

A 2-Dimensional drawing of each part was created and
put in a pdf file as shown below:

3of9

The above file was then used by the laser cutting machine
to cut each part from a sheet of acrylic. The body of the
robot was made from acrylic due the following:

e High impact resistance which is 10 times higher
than glass.
It is Lightweight.
It has excellent dimensional stability.
Innate weatherability and UV resistance.
High optical clarity. (Makes it easier to identify
problems in electrical connections within the
body)
e Requires less energy when laser cutting as
compared to other materials like aluminum.
e Its lower price compared to other durable
alternatives like metals.

Laser cutting uses a highly focused laser beam to rapidly
heat up a small section of the material, melting and
vaporizing it across its thickness. The laser head is moved
by stepper motors in the x, y and z axes to allow intricate
parts to be cut out from a solid sheet of material.

The chassis of the robot can be made in a number of
ways such as 3D printing, or milling but laser cutting was
chosen due to the following advantages:

o Almost unlimited 2D complexity.

e High precision as the diameter of the laser is that
of a hair and laser head is controlled by high
resolution stepper motors.

e No material contamination as no coolant is used.

e High speed. It took only about 30 minutes to
produce all the parts of the robot described earlier.

Precautions that should be taken against the harmful gasses
produced by the laser cutter machine by ensuring it is
equipped with an air filter.

1. Mobile Platform

This section consists of the hardware, electromechanical
devices and the various electrical components that are
sources of power and transmit the required power to the
components. They work together to physically move the
vehicle based on commands received from the navigation
section.
The final robot was estimated to weigh approximately 3kg.

. . 2.

A target maximum acceleration of 0.5m/s is selected.
Given the above two considerations and assuming a worst
case 50% efficiency, the required motor torque is given by:

T = a:’mxr = Q2x30UB _ 06375 Nm, where a is the
X1 2x0.5

target acceleration, m mass of the robot, r radius of the
drive wheels and N the count of driven wheels
A target speed of 0.8m/s is selected. Given the wheel

radius, the appropriate motor rotation count is given by:

60v 60x0.8
RPM = T 2xmx0.0425

2XTIXT
the target speed, and r is the driven wheel radius.

= 179.751rpm, where v is

[Joint team 3]

Typical current draw is calculated with the relation:
Txo _ 006775x2mx179751560 _ () 14 where T is the

I = =
v 12

required torque, ® is the required angular velocity and V is

the supply voltage.

The motors best matching the requirements above are found
to be 12V, 200rpm with encoders.

The components making up the Mobile Platform include:
Two 200rpm, 12 Volt DC motors with encoders.
L298N motor driver.

Arduino Mega.

Two DC to DC Boost converters

Powered USB hub.

Castor Wheels.

Rubber Wheels.

Slide Switches.

Two Shaft couplers.

Two Battery Power Sources.

Jumper wires.

Boost converter.

The first step before assembling the components was to
determine the amount of power required by each electrical
and electromechanical component.

P = IV (Watts)

Where; ‘P’ is Power in Watts

‘I’ is Current in Amperes
‘V’ is Voltage in Volts

This information was wused in purchasing the right
battery with sufficient power for all the devices. The first
step in determining total power required was to find the
operating voltage and current for each device. Components
with the same operating voltages were connected to the
same voltage line with the current on that wire being the
sum of the currents drawn to each device. The following
chart shows the electrical and electromechanical
components, the amount of current drawn by each and their
connections with each other.

RPLIDAR fowerto RPLIDAR
(1A) |serial Communication

USB HUB

equation ‘I’

5V BATTERY
(18w) Serial Communicatios

Power to Pl RASPBERRY Pl |,
(15)

4.2V BATTERY

Serial Communication

BOOST
CONVERTER
4.2V to 5V

Power to Motors|
And Engodersgrytser ARDUINO UNO
CONVERTER (1a) Power to Arduino Uno
4 Q T
" [Motor velocity commands

MOTOR DRIVER
Left Motar (0.1A) Right Mdjtor

velocity signal velocity gignal
LEFT MOTOR AND RIGHT MOTOR
— ENCODER AND ENCODER | —
(2A) (2A)

Power to RPLIDAR and Arduino UNO

Right Encoder
Left Encoder Position Readings

Position Readings

It is observed that there are two power sources in
the system. One is used to power the Raspberry Pi and the
other powers the remaining components. The purpose for

4 0f 9

this is the Raspberry Pi is powered through a Type-C USB
and not a positive and ground line like most of the other
devices like motors and found it convenient to give it its
own smaller power source.

The total sum of the currents of all the devices was found
to be 7.6A but since there are two power sources, they had
power ratings based on the currents drawn by the devices
they powered. The battery powering the Raspberry Pi must
have a minimum of 7.5W rating since the Pi requires:

P=15*5 =75W.

The Battery used for this project to power the Pi was rated
at 18W which was well above the required amount hence
safe to use.

The other battery power source was needed to supply 4A
to both motors and encoders at 12V, 1A at 5V to the
RPLIDAR and Arduino Mega each and 0.1A at 12V to the
motor driver. The total power is then calculated as follows:

P=((4*12)+ 2(1 *5)+ (0.1 * 12) = 59.2W
This means that the minimum power rating of the battery to
be used should be 59.2W in order to satisfy the motors’
requirements at stall. If a single battery were to be used to
power everything including the Raspberry Pi, it should have
a minimum power rating of 66.7W. A point to note is that
when determining the amount of current drawn by a motor
for calculations of the required power supply, one should
use the stall current as it is the highest motor current in all
of its operating modes hence a power supply that is
sufficient during motor stall is to be chosen.

When using batteries, it is sometimes observed that
it may have the required Power but at a lower voltage than
that required by the device. This is where Boost Converters
are used to raise the supply voltage of the battery to the
voltage required by the device. In this project, two boost
converters were used to raise the voltage from 4.2V to 12V
for the motors and 5V for the RPLIDAR and Arduino
Mega. Portable power sources have a supply voltage value,
supply power rating and a capacity value. The capacity of a
battery is the measure of how much current it can supply in
one hour before depleting its charge, e.g. a 3000mAh fully
charged battery can supply 3A for an hour before fully
discharging. The higher the battery capacity, the longer it
will last on a single charge.

The USB hub was used in order to power multiple
devices and allow them to send and receive data from one
port of the Raspberry Pi. The boost converter inputs 5V to
the hub which powers the Arduino Mega and RPLIDAR
which both send and receive serial data from the Raspberry
Pi through the Hub. The RPLIDAR sends data representing
the distance of points detected and their angle from a
reference axis while the Arduino Mega sends serial data on
the position of the encoders and receives serial commands
from the Raspberry Pi on the velocity of the motors. The
Arduino Mega, after receiving velocity commands from the
Raspberry Pi, calculates the appropriate PWM (Pulse Width
Modulation) signals to send to the motor driver. The code in
the Arduino incorporates the PID (Proportional Integral

[Joint team 3]

Differential) controller to minimize the error between the
required motor velocity and its actual velocity. This is a
form of closed loop control.

The components of the PID control include:

e Proportional Control (P) multiplies the current
error value to the proportional gain (Kp). This
means that the proportional reaction is large when
the error is large and is small when the error is
small. P, however, is unable to get rid of
steady-state error because when the error becomes
infinitely small, the proportional reaction is also
infinitely small.

e Integral Control (I) multiplies the integral of the
error with a gain (Ki). This means that it is able to
eliminate steady state error because as time goes
by, the sum of the error accumulates leading to a
larger integral reaction to correct the error.

e Derivative Control (D) multiplies the derivative of
the error to the derivative gain (Kd). This means
that when the error is predicted to be large at a

future time, then the derivative response is
increased. This produces a damping effect by
smoothing down oscillations and reducing
overshoot.
P K,e(t)
—Sslpoim+ Emor» 1](',j-c(r)d‘r 9 Output—»
0
D de(r)
dt

2. Navigation

This section consists of the software that enables the
robot to map the game field using the RPLIDAR and
navigate through it autonomously using the map generated
and goal points which are given as input. The software
controlling the vehicle can be written from scratch which is
cumbersome but there exists an alternative to this method.
To better understand it, first know how smart phones and
computers work and what led to them operating as they do
now. When phones and computers were first produced, each
manufacturer made their own hardware and created very
specific firmware to allow applications to run. This made it
very hard for developers to make applications as there were
so many different firmware to learn. The solution for this
was brought about by the appearance of operating systems
which unified hardware and software which led to the
modularity of hardware. Mass production reduced cost,
specialized development brought high performance, and
ultimately made it possible for computers and mobile
phones to be personalized [2].

S5of9

The robotics community followed this development in
order to prevent each company from having their own
firmware by creating a common robotics operating system
for all robots. This allows immense collaboration in
creating new packages to run new or existing hardware and
eliminating the need for companies or individuals to come
up with software from the firmware level to allow
applications to run.

Robotics Operating System (ROS) is what was used for
this project because of its popularity and it includes tools
that are used to develop robot application programs such as
hardware abstraction, low-level device control, sensing,
recognition, SLAM (Simultaneous Localization And
Mapping), navigation, manipulation and package
management, libraries, debugging and development tools.
Therefore, is ROS an operating system for robots? The
answer is no, it is a middleware that needs to run on an
existing operating system. ROS is not a conventional
operating system such as Windows, Linux and Android, but
a meta-operating system that runs on the existing operating
system. In order to operate ROS, an operating system such
as Ubuntu, which is one of Linux’s distributions, must be
installed first. After completing ROS installation on top
Linux, features provided by the conventional operating
system such as process management system, file system,
user interface and program utility (compiler, thread model)
can be used. In addition to the basic features provided by
Linux, ROS provides essential functions required for robot
application programs as libraries such as data
transmission/reception among heterogeneous hardware,
scheduling, and error handling. This type of software is also
called middleware or software framework.[3]

In this project ROS2 Humble was chosen for its maturity
and stability. The accompanying operating system chosen is
Ubuntu 22.04. Before proceeding to programming, there are
some terms used in ROS that would be useful to
understand: [4]

e The Node is the smallest unit of processor running
in ROS. For example, in the case of mobile robots,
the program to operate the robot is broken down
into specialized functions. Specialized node is used
for each function such as sensor drive, sensor data
conversion, obstacle recognition, motor drive,
encoder input, and navigation.

e A Package is the basic unit of ROS. The ROS
application is developed on a package basis, and
the package contains either a configuration file to
launch other packages or nodes.

e A Metapackage is a set of packages that have a
common purpose.

e A Message is made up of variables such as
integers, floating point and Boolean.

e The Topic is where all messages pass through.
Each topic is used for a unique type of message
e.g. a motor velocity topic.

e Publish is the act of sending a message via a topic

[Joint team 3]

and a publisher is the node that sends the message.

e Subscribe is the action of receiving a message
through a topic while Subscriber is a node that
receives the message.

e A Service is synchronous bidirectional
communication between the service client that
requests a service regarding a particular task and
the service server that is responsible for
responding to requests.

e A Service Server is a server in the service
message communication that receives a request as
an input and transmits a response as an output.

e A Service Client is a client in the service message
communication that requests service to the server
and receives a response as an input.

e An Action is another message communication
method wused for asynchronous bidirectional
communication. Action is used where it takes
longer time to respond after receiving a request
and intermediate responses are required until the
result is returned, before which, feedback sends
status messages.

e An Action Server is in charge of receiving goals
from the client and responding with feedback and
results.

e An Action Client is in charge of transmitting the
goal to the server and receives result or feedback
data as inputs from the action server.

e A Parameter refers to variables used in the node.
For example, you can specify settings such as USB
port number, camera calibration parameters,
maximum and minimum values of the motor
speed.

e A Parameter Server is where parameters that are
called in the package are registered before itself
being loaded to the master.

e URI (Uniform Resource Identifier) is a unique
address that represents a resource on the Internet.

e RPC (Remote Procedure Call) stands for the
function that calls a sub procedure on a remote
computer from another computer in the network.

e XML (Extensible Markup Language) utilizes tags
in order to describe the structure of data. In ROS, it
is used in various components such as *.launch,
* urdf, and package.xml.

e XMLRPC (XML-Remote Procedure Call) is a type
of RPC protocol that uses XML as the encoding
format and uses the request and response method
of the HTTP protocol which does not maintain nor
check the connection.

e The Package.xml contains package information
that describes the package name, author, license,
and dependent packages.

After understanding the introductory concepts of ROS,
next is SLAM and Navigation, which were used during
mapping, localization and autonomous navigation in the

6of9

game field.

SLAM allows a robot to generate a map of an
environment with very little human assistance. This is a
method of creating a map while the robot explores the
unknown space and detects its surroundings and estimates
its current location as well as creating a map. The sensing
device used here is the RPLIDAR which emits modulated
infrared laser signals and the laser signal is then reflected by
the object to be detected. The returning signal is sampled by
the vision acquisition system in RPLIDAR and the DSP
embedded in RPLIDAR starts processing the sample data
and output distance value and angle value between object
and RPLIDAR through a communication interface. The
high-speed ranging scanner system is mounted on a
spinning rotator with a built-in angular encoding system.
During rotation, a 360-degree scan of the current
environment will be performed.[7].

Pose of a robot refers to its position and orientation and it
must be calculated based on lidar information and encoder
readings. Dead reckoning is used to estimate pose of a robot
by comparing the sensor readings of pose to the calculated
readings of pose from the encoders which use the velocities
of the wheels.[5]

The above represents the center (x, Y),
wheel-to-wheel distance D and wheel radius r.

Position and Orientation after travel
Ogsns View 10 Bicr1)

Position and Orientation before travel
(g, Vi, 8)
Assuming the robot traveled a very short distance during
time T, , the rotational speed(v, , v,) of the left and right
wheels are calculated as shown in Egs. (1) and (2) with the

[Joint team 3]

amount of left and right motor rotation (current encoder
value E, ¢, E, ¢ and the previous encoder value El p, E, p).

= Elc_EBlp) _pi radian .

" (Te 180 (second) equation 1.
_ (Erc—Erp \x _pi radian]

v (Te) 180 second) equation 2

The Equations 3 and 4 calculate the velocity of the
left and right wheel (V,, V,). From the left and right wheel
velocity, linear velocity (v,) and the angular velocity (wy)
of the robot can be obtained as shown in Equations 5 and 6.

Vli= vl*r (%t:r) equation 3
Vr=vr*r (%tfr) equation 4
Vi Yrtel meter) equation 5
Wiz Yrovl rotion equation 6

Finally, using these values, we can obtain the
position (x(k+1), y(k+1)) and the orientation (theta(k+1
)) of the robot from Equation 7 to 10.

As= vk * Te AB = wk * Te equation 7
X(k + 1)= Xk + As * cos(6k +5-) equation 8
Y(k + 1)= Yk + As * sin(6k +) equation 9

Ok + 1)=06k * AO equation 10

There are two main categories of algorithms used in SLAM,
but one is most common, that is Smoothing using Pose
Graph Estimation. The general idea behind Pose Graph
Estimation is as follows. For successful SLAM, at least one
absolute measurement device (like a Lidar) and one relative
measurement device (like rotary encoders or Inertial
Measurement Unit IMU) are required. The lidar is used to
detect features in the environment whereas the encoders are
used to approximate the robot pose. Say the robot moves in
a rectangular box. The lidar captures a feature, say the first
wall. Then the robot is moved so that the lidar detects the
second wall. The new pose of the robot is estimated using
the encoder data by dead reckoning. The robot is then
moved so as to capture the third and fourth wall in a similar
fashion. Upon reaching the first wall, the algorithm detects
a feature that it had recorded earlier, along with the
approximate new pose. This completes a loop. Now since
the first and last poses have to be identical, the recorded
pose is adjusted so that the poses match. However, since
each of the poses are relative to their respective preceding
poses, they have to be adjusted as well. Doing so produces
an approximation of the robot poses and the features in the
environment. Now the environment is divided into a grid of
cells called Probabilistic Occupancy Grid. Each cell is
assigned a probability of occupancy, that is, all cells have a
probability between 0 and 1 that they are occupied. They
can be visualized as occupied cells being black, unoccupied

7of 9

cells being white, and the rest being a shade of gray,
showing that the model is not sure whether or not the cell is
occupied. This description is superficial and does not
showcase the calculations done. Now the slam-toolbox
package makes it easy to conduct SLAM. The technicalities
are abstracted away and only a handful of parameters are
available for tweaking.[8]

Navigation refers to the process of a robot moving in an
environment autonomously. Of importance in navigation is
motion planning and path planning. A path is a sequence of
poses that smoothly connect the start and the goal, and path
planning is the process of determining said sequence.
Motion planning is the process of not only determining the
sequence of poses but also their derivatives, namely,
velocities, and accelerations. A basic overview of the path
planning process using the Rapidly Exploring Random
Trees (RRT*) algorithm is as follows. A map of the
environment is a prerequisite. A tree (a network of
interconnected nodes) is required. From the starting node, a
random position in the state space is selected and a node is
placed there. The random selection is biased so that there is
greater probability of a new node being placed in the
unexplored areas of the space than in the explored areas.
Assuming there is no obstacle between the new node and
the nearest existing node, the two nodes are connected by
an edge, adding the node to the tree. Otherwise, the node is
not added to the tree. Now another node is selected
randomly as already described. But instead of connecting
the new node to the nearest existing node in the tree, the
nodes within a specified search radius are analyzed with the
objective being finding out a way to connect the nodes that
minimizes total path length. As the process is repeated, the
nodes approach the goal. Once they reach the goal, more
iterations refine the path so that it approaches the optimal
path to the goal as the number of samples approaches
infinity. This process not only generates a near optimal path
to the goal, but also a near optimal path to any location in
the environment. Just like in SLAM, the Navigation2 and
Nav2_ bringup packages in ROS2 abstract the technicalities
and present only a handful of parameters for refinement.

(6], [9].

The next step after understanding how ROS is used to
implement mapping and navigation is a general overview of
the steps and terminal commands followed in implementing
this on the robot:
1. Setup Ubuntu and ROS2 on your computer.
2. Create your workspace folder/directory, in it add
folder named ‘src’ and in it clone the following
Github repository:
https://github.com/rudll/dojo.git..This repository
contains the ROS package and instructions to
install additional packages needed for this project.
3. Run the command ‘colcon build —symlink-install’
in the workspace directory to build all your

https://github.com/ru3ll/dojo.git.

[Joint team 3]

packages in the ‘src’ directory.

4. Run the command ‘source install/setup.bash’ to
allow the package commands to be accessible.

5. Run ‘ros2 launch ‘nameOfYourPackage’
launch_sim.launch.py worlds:= ‘path to your
world file use sim _time:=true” This starts gazebo
which simulates the robot with its environment in a
virtual world.

6. Run ‘ros2 run teleop_twist keyboard
teleop_twist_keyboard’ to activate the controls
needed to move the robot in gazebo.

7. Run ‘rviz2’ to launch rviz which is a software that
displays the calculated position of the robot in
gazebo or the real world based on the wheel
velocities. It simulates where it thinks the robot is
located based on odometery.

8. Run ‘ros2 launch
online_async_launch.py
params_file:=./src/dojo/config/mapper _params_on
line_async.yaml’ to launch SLAM and begin
mapping.

9. Save and serialize the map created using the slam
toolbox plugin in rviz in order for it to be used
during navigation.

10. Run ‘ros2 launch nav2_bringup
localization launch.py map:=path _to your map’
that acts as the map server of the map saves during
mapping.

11. Run ‘ros2 nav2_bringup
navigation_launch.py use_sim_time:=true
map_subscribe_transient_local:=true’ to launch
navigation package that allows one to place goals
on a map and have the robot move autonomously

slam_toolbox

launch

to the goal.
12. To control the real robot, run ‘ros2 launch
‘nameOfYourPackage’ launch_robot.launch.py

use sim_time:=false’ then rerun the previous
commands and set use sim_time:=false. Launch
the lidar package using ‘ros2 launch
‘nameOfYourPackage’ rplidar.launch.py’

C. Experimental Results

Once assembly of the robot and development of its
software was done, it was ready for testing.

The robot’s maneuverability was tested by remotely
controlling its motion and observing how it behaves round
tight turns at higher speeds and if it stops safely after
applying a stop signal to the motors when at full speed. It
was able to accomplish the above two without falling on its
side. Additionally, because of the differential drive system,
it was able to turn on the spot by giving the two motors the
same magnitude but different direction of velocity because
the left and right wheels were the same distance from the
center of the chassis base.

Traction is how well the robot’s wheels are able to push it

8of9

without slipping. This property is increased by the increase
of the friction between the wheels and the surface it is on.
Therefore, to ensure high traction, wheels with rough
surfaces were used to increase friction. Since the vehicle
has four wheels, two being castor wheels, it is
recommended to ensure that the two differential wheels are
always receiving maximum weight to reduce slip. This was
achieved by raising the castor wheels a small amount above
the differential wheels from the ground, about one
millimeter, in order to increase traction on the differential
wheels without causing the vehicle to noticeably pivot
about the two differential wheels.

Before testing the mapping and navigating ability of the
vehicle, first simulate it using gazebo, RVIZ, slam package
and nav2 packages for localization and navigation. The
reason for this is to improve on the operator’s ability to
control the vehicle quickly and perform numerous iterations
of mapping and navigation over short periods of time.
During mapping, it was observed that RVIZ misrepresented
the actual position of the virtual robot in Gazebo when the
robot had entered a region in the game field that resembled
a previous section that had already been mapped. The result
of this problem was the destruction of the map generated,
rendering it unusable requiring a new map to be generated
which leads to loss of time. To solve this problem, ensure
the speed of the robot is adjusted to lower velocities to
allow for enough processing time for the map being
generated and for subtle corrections of the lidar data to take
place efficiently. Once mapping has been done successfully,
navigation is then tested using the map generated. Nav2
packages serve the map in RVIZ and create regions on the
map known as regions of high risk, regions of medium risk
and regions of low risk. The wall represents a region of
high risk where the vehicle should never pass through,
about 0.3 meters and below from the wall represents the
region of medium risk where the vehicle only chooses to
pass through if it is the only option and the region of low
risk is about 0.3 meters and above away from the wall
which is where the vehicle picks as the first choice to pass
through as it is farthest from the wall. It was observed that
during navigation the regions of medium risk would overlap
in areas of a constriction, making it harder for the vehicle to
pass through autonomously as it would spend more time
processing the best path as there would be no region of low
risk. To solve this problem, the navigation parameter known
as inflation radius must be decreased in order to prevent
overlapping of the region of medium risk. A precaution is to
ensure the inflation radius is more than or equal half the
distance of differential wheels separation to prevent
collision during navigation.

Once the simulation and changing of parameter values is
done, begin performing mapping and navigation on the real
robot. It is here that the durability of the robot is observed
in how long its structure can hold up after numerous trials
of mapping and navigation. It is observed that using glue on
joints will wear out faster and make them loose but the

[Joint team 3]

better alternative is to use screws on most or all the joints as

they are more rigid and unaffected by higher temperatures.

D.

References

“TurtleBot3.” n.d. TurtleBot. Accessed September
21, 2024. https://www.turtlebot.com/turtlebot3/
ROS Robot Programming, 1st ed., ROBOTICS
Co., Seoul, Republic of Korea, 2017, pp. 2-6.
ROS Robot Programming, 1st ed., ROBOTICS
Co., Seoul, Republic of Korea, 2017, pp. 10-13.
ROS Robot Programming, 1st ed., ROBOTICS
Co., Seoul, Republic of Korea, 2017, pp. 41-49.
ROS Robot Programming, 1st ed., ROBOTICS
Co., Seoul, Republic of Korea, 2017, pp. 313-316.
ROS Robot Programming, 1st ed., ROBOTICS
Co., Seoul, Republic of Korea, 2017, pp. 332-360.
SLAMTEC. (2020, October).RPLIDAR Al.Low
Cost 360 Degree Laser Range Scanner [Online].
H. Durrant-Whyte and T. Bailey, "Simultaneous
localization and mapping: part [," in IEEE
Robotics & Automation Magazine, vol. 13, no. 2,
pp. 99-110, June 2006, doi:
10.1109/MRA.2006.1638022 keywords:
{Simultaneous localization and mapping;Mobile
robots;Robotics and automation;History;Artificial
intelligence;Navigation; Vehicles;Buildings;Bayesi
an methods;Particle filters},Link:

https://ieeexplore.ieee.org/document/1638022
“1105.1186v1 [cs.RO] 5 May 2011.” 2011.

arXiv.Link: https://arxiv.org/pdf/1105.1186.pdf

9of9

https://ieeexplore.ieee.org/document/1638022
https://arxiv.org/pdf/1105.1186.pdf

