
Joint Team 1 1 of 10

Autonomous Robot
for the Robotics Dojo Competition 2024

Mohamed I. Tuke, Obed G. Wambugu, Nasir J. Idris, Leonard M. Boma and Nathan KIngori (Limit Breakers)
Washington Kamadi, Micheal Kimani and Felix Wanyoike(Team 0804)

Abstract—This paper presents the design and development
of an autonomous robot intended for the Robotics Dojo
Competition. The primary focus of the competition is to create
a robot that can autonomously navigate a gamefield using a
Lidar sensor as its main sensor for environmental perception.
Each competing team was provided with a Raspberry Pi and
encouraged to leverage ROS2 (Robot Operating System 2) for
enhanced navigation and control. The robot employs real-time
mapping to construct an accurate representation of the
gamefield, enabling efficient and collision-free navigation.
Critical elements of the design include the use of Lidar-based
SLAM (Simultaneous Localization and Mapping) for
environmental understanding, and ROS2 to manage sensor
integration, path-planning algorithms for autonomous
movement, and robust decision-making protocols. This paper
details the key design decisions, system architecture, and
algorithms implemented, along with a discussion on the
challenges encountered and solutions devised.

Keywords—robotics, mobile robot, map generation, ROS,
Linux.

I. INTRODUCTION
In recent years, autonomous robots have gained significant
traction across various domains, including industrial
automation, search and rescue missions, and competitive
robotics. The Robotics Dojo Competition presents a unique
challenge that tasks participants with developing a fully
autonomous robot capable of navigating a structured
gamefield. To promote standardization and advanced
development, each team was provided with a Raspberry Pi
and encouraged to use ROS2 (Robot Operating System 2)
as the foundation for robot control and navigation. The
primary sensor for the competition is a Lidar unit, which
enables the robot to perceive its environment and generate a
real-time map for autonomous movement.

This paper describes the design and implementation of an
autonomous robot built for this competition. The robot
utilizes a Lidar sensor for environment perception and
employs SLAM (Simultaneous Localization and Mapping)
techniques to continuously update its understanding of the
gamefield. The Raspberry Pi serves as the robot's
computing platform, running ROS2 to integrate sensor data,
manage navigation algorithms, and control movement.
ROS2’s flexibility and modularity are central to the robot’s
design, enabling efficient communication between
components and facilitating the development of robust

navigation strategies.

In addition to hardware considerations, this paper explores
the software stack that enables autonomous
decision-making, including path-planning algorithms and
sensor fusion techniques. By combining the power of ROS2
with state-of-the-art mapping technologies, the robot is able
to navigate the gamefield autonomously while avoiding
obstacles and optimizing its movements. This paper
outlines the design process, key decisions made, and the
challenges encountered during the development phase,
offering insights into the system's performance in a
competitive environment.

A. Design Strategy
Our approach to the Robotics Dojo Competition is focused
on achieving a balance between reliability and functionality
while minimizing complexity to reduce potential failure
points. Given the constraints of limited working hours and
the technical requirements of the competition, the team
prioritized the development of a robust and reliable
navigation system using a Lidar sensor and ROS2 as the
foundational software framework. The design philosophy
revolves around building a solid core of autonomous
navigation and mapping capabilities before introducing
additional features that could complicate the system and
impact overall reliability.

● Core Approach to Challenges

The primary challenge of the competition is to
autonomously navigate a dynamic gamefield while
mapping the environment in real time. Our strategy is to
fully leverage the Lidar sensor to perform SLAM
(Simultaneous Localization and Mapping), enabling the
robot to construct a map of the gamefield while
continuously localizing itself within that map. This
approach ensures that the robot can avoid obstacles and
plan efficient paths through the environment. By focusing
on a well-tested and streamlined Lidar-based navigation
system, we reduce complexity and improve reliability,
ensuring that the core functionality of autonomous
navigation is dependable under competition conditions.



Joint Team 1 2 of 10

● Addressing Tradeoffs: Capability vs. Robustness

Our team recognizes that increased sophistication in design
often leads to additional points of failure. To manage this,
we made a deliberate choice to focus on refining the
capabilities of the robot’s essential functions rather than
adding complex secondary features that may not
significantly enhance performance. Specifically, while
advanced capabilities such as multi-sensor fusion or
complex machine learning algorithms could potentially
improve navigation or task execution, they also introduce
greater computational demands and failure points. Instead,
we chose to optimize the Lidar-based SLAM system and
path-planning algorithms, focusing on tuning them to work
reliably with the limited processing power of the Raspberry
Pi.

By maintaining a streamlined design, the robot's
overall reliability is enhanced. The use of ROS2 provides
flexibility and modularity, which allows us to adapt to
unforeseen challenges without needing to overhaul the
entire system. This architecture supports the ability to add
capabilities in future iterations without compromising the
reliability of the existing system during the competition.

● Reliability vs. Complexity Tradeoffs

To further address the tradeoff between complexity and
reliability, our design strategy includes a rigorous testing
cycle. We allocated significant time toward testing and
debugging core functionality, prioritizing stable and
predictable behavior in real-world scenarios over
implementing additional, unproven features. This decision
ensures that the robot performs consistently and minimizes
the likelihood of system failures during competition.

Furthermore, the simplicity of the hardware
architecture reflects our desire to minimize mechanical and
electrical failure points. By focusing on key components
such as the Lidar sensor and Raspberry Pi, we reduced the
risk of hardware malfunctions, which could be introduced
by more complex or experimental setups. This emphasis on
reliability was also extended to the software side, where we
utilized ROS2’s well-established libraries and
community-tested modules to manage navigation, sensor
data processing, and control algorithms. The use of
established, well-documented frameworks contributes to the
overall robustness of the system.

● Time Allocation: Capability vs. Testing

With the limited working hours available, our team
prioritized iterative testing and refinement over adding new
capabilities late in the design process. Each new feature or
adjustment was subjected to multiple rounds of testing to

ensure that it did not negatively affect the robot’s core
functionality. The team followed a methodical approach,
first validating the Lidar-based mapping and navigation
system in simulation before moving to real-world tests on
the gamefield. This approach allowed us to identify and
correct potential issues early, focusing our time on
enhancing reliability and refining the system’s core
behaviors.

In conclusion, our design strategy for the Robotics
Dojo Competition emphasizes the development of a robust,
reliable, and simple navigation system using Lidar and
ROS2. By prioritizing core capabilities and iterative testing,
we reduced the complexity of the system while ensuring
that it can perform consistently in a competitive
environment. This balance between capability and
robustness allows our team to focus on achieving
dependable performance rather than chasing additional,
potentially unreliable features.

B. Vehicle Design
The design of our autonomous robot for the Robotics Dojo
Competition was a multidisciplinary effort, involving
mechanical, electrical, and software components working in
harmony. Each subsystem was chosen based on specific
design methodologies, focusing on simplicity, reliability,
and efficiency. Below is a detailed description of our
approach to component selection, lessons learned from
design iterations, and key software strategies that were
employed.

The hardware structure of the robot consisted of
appropriately selected electronic and mechanical
components.

Fig.1. Hardware Structure of the Robot

● Mechanical Components

The mechanical structure of the robot is centered around a
lightweight, durable acrylic chassis. A round chassis design
was chosen to improve the robot’s maneuverability,
particularly in environments where tight turns and complex
navigation are required. Acrylic was selected due to its
balance between strength and weight, ensuring the robot
remains agile while offering sufficient protection for



Joint Team 1 3 of 10

internal components. Fig

Fig. 2. CAD Model of the robot

Furthermore, 65mm diameter wheels Fig. 3.were
chosen to provide sufficient ground clearance coupled with
two caster wheels positioned at the front and back, allowing
the robot to handle small obstacles without sacrificing
speed or stability. Motor brackets and couplings were
carefully selected to ensure proper alignment and secure
attachment of the DC motors to the chassis.

Fig. 3. Wheel (65mm Diameter) and encoded motor

● Electrical Components

For the electrical components, two 12V 200 RPM DC
motors with encoders were used to provide precise control
over wheel movement. The use of encoders allowed for
accurate feedback, which was crucial for ensuring
consistent motion and integration with the navigation
algorithms. The DC motors driving the platform were
controlled by a two-channel L298N controller based on a
double H-bridge. The controller achieved current efficiency
on each of the channels equal to 2A. Additionally, the
maximum voltage supplying the motors was 35V. This
controller was protected against overheating by an added
heat sink.

Fig. 2. Schematic diagram of the L298N DC motor controller.

The heart of the robot was a single-board
Raspberry Pi 4B computer with a Cortex-A72 64-bit
processor acting as the robot's on-board computer and the
supporting Arduino MEGA (ATmega2560) microcontroller
responsible for motor control. The on-board computer was
the unit responsible for processing any data coming from
the sensors and for wireless data transmission to the
operator's personal computer.

The microcontroller, which was connected to the
central unit via a USB connector, was responsible for
receiving signals from the encoders and developing control
commands transmitted directly to the motors via the GPIO
pins. The purpose of using the Arduino MEGA
microcontroller (Table 3) was to relieve the on-board
computer in order to handle four system interrupts
necessary for correct control (reading data from the
encoders).

Table 2

RASPBERRY PI 4B SPECIFICATIONS

Parameter Value

Processor Broadcom BCM2711, Cortex-A72 64-bit SoC,
ARM8v-A, 4 x 1.5 GHz

RAM 4 GB LPDDR4-3200 SDRAM
Memory Flash: micro SD card slot

Supply voltage 5.1 V, 3 A via USB C
Wi-Fi interface 2.4 GHz and 5.0 GHz IEEE 802.11ac
Communication

interfaces
UART, SPI, I2C, GPIO, DSI, CSI, USB 2.0,

USB 3.0

Table 3.

ARDUINO MEGA MICROCONTROLLER SPECIFICATIONS



Joint Team 1 4 of 10

Parameter Value
Microcontroller ATmega2560
Clock frequency 16MHz
Flash Memory 256 kB

SRAM 8 kB
EEPROM 4 kB

Analogue Input Pins 16
Digital I/O Pins 54 (15 PWM outputs)
Supply Voltage 7 - 12V

The main source of information obtained from the
surroundings was the RPLidar A1 laser scanner by Slamtec.
It was responsible for generating the data used to create a
digital map of the surroundings. It was an allothetic source
of information with high accuracy and high speed of work
due to the use of a laser beam in the infrared range as a data
carrier. Table 4. presents the basic operating parameters of
the RPLidar A1.

Table 4

BASIC OPERATING PARAMETERS FOR RPLIDAR A1

Below is the fully assembled robot.

Fig. 4. Fully assembled Autonomous Robot

● Control and Software Components

The software control architecture was built around ROS2

(Robot Operating System 2), running on an Ubuntu OS
installed on the Raspberry Pi 4. This decision was driven by
ROS2’s ability to handle real-time data processing and its
modularity, which allowed us to integrate various sensors
and control systems efficiently. The core control strategy
utilized ROS2’s SLAM and Nav2 (Navigation 2) packages
to generate real-time maps of the gamefield and plan the
robot’s path through it. Rviz2 was used for data
visualization, helping us track the robot’s environment
perception and verify its navigation in real-time.

1. Ubuntu 22.04

The Ubuntu system (Figure 2.5) is a complete GNU/Linux
operating system distribution using MATE as the desktop
environment.

Fig. 3. Screen of a computer with Ubuntu installed

This system provided great support for ROS2
software. This version of Ubuntu was the recommended one
that was compatible with the specific ROS2 packages we
desired to make use of. The same system was installed on
the robot's platform. It was the latest version of this
operating system, with the longest technical support at that
moment. The TCP/IP network was used for communication
between the robot's central unit and the user's personal
computer. The communication was provided using the ssh
communication protocol.

2. Robot Operating System

As previously mentioned, the software used to implement
control algorithms and responsible for acquiring and
processing of data from sensory systems was the ROS2
platform.

ROS2, the successor to the original ROS platform,
was designed to overcome the limitations of ROS1 while
enhancing its capabilities for more modern robotic systems.
Released in 2017, ROS2 was created with the goal of
improving performance, reliability, and scalability,
especially in real-time and multi-robot systems. While



Joint Team 1 5 of 10

ROS1 was heavily dependent on a single communication
layer, ROS2 adopted a Data Distribution Service (DDS)
protocol to facilitate more robust and flexible
communication between nodes, making it suitable for
real-time applications and distributed systems.

Like ROS1, ROS2 operates using a modular
architecture where various processes, known as nodes, run
concurrently to manage different robot functionalities such
as sensing, control, and navigation. These nodes are
connected within a distributed system, allowing for
seamless communication through topics, services, and
actions. However, ROS2 improved upon ROS1 by adding
support for native multi-threading, improved security
features, and enhanced real-time performance.

Moreover, ROS2 is built with compatibility for
more operating systems, including Windows, in addition to
Ubuntu and macOS. It also includes enhanced support for
embedded systems, making it a versatile choice for a wider
range of robots, from mobile platforms to industrial and
collaborative robots. ROS2 is a key enabler for modern
robotic systems that require high reliability, real-time
decision-making, and scalability across a variety of
environments and applications.

The operation of the ROS platform was based on
the communication of processes, which were
simultaneously working nodes responsible for various
functions of the robot (Fig. 2.6). They formed a network in
which the processes were interconnected. This ensured that
each node had access to the network, cooperation between
them and the ability to monitor the type of data sent to the
network. ROS enabled the exchange of messages in the
form of topics, services, parameters and actions.

Fig. 5. Diagram of node cooperation in the ROS environment

In the ROS2 environment, programs are still
developed using high-level languages like Python and C++,
but the build system underwent significant changes. The
primary build tool in ROS2 is colcon, which replaced catkin
as the official build system. Colcon was developed to
handle the increased complexity and scalability of ROS2,
particularly when managing large workspaces with
numerous packages.

Colcon, like catkin, automates the build process
but introduces improved features for handling workspaces
with multiple interdependent packages. It uses
Python-based scripts and CMake macros to generate build
rules tailored to the target environment, ensuring
compatibility across different platforms. With colcon, users
can build, test, and package multiple projects concurrently,
making it highly efficient for large-scale projects.
Additionally, colcon offers better dependency management,
workspace overlaying, and improved support for
cross-compilation.

Another advantage of colcon over its predecessor
is its more flexible plugin-based architecture, allowing
developers to extend its functionality easily. It also
integrates well with modern development environments,
streamlining the process of managing complex robotic
systems in ROS2.

The ROS2 environment also had many graphical
tools that allowed control of the operation of individual
vehicle components and software packages. In addition, it
was equipped with tools that allowed one to visualize
vehicle operation on the basis of data from sensory systems,
as well as to simulate the vehicle operation. The most
commonly used tools were:

➔ RQT package – a platform included in the ROS
software that enabled the implementation of
various GUI tools in the form of plug-ins. The
package was used to manage all tools in a single
window. The platform was the most commonly
used software for the diagnostics of robots. In
addition, the platform allowed visualization of the
structure of the nodes and the connections between
them, which greatly facilitated the understanding
of ROS operation. What is more, the RQT package
enabled node analysis by mirroring the
transformation tree launched by the basic node of
the rqt_tf_tree system and invoking the node
connection network – rqt_graph.

➔ Rviz2 (Fig. 6) – a package used for
three-dimensional visualization of messages in
ROS2, which was developed at a Korean
university.



Joint Team 1 6 of 10

Fig. 7. Rviz graphic visualizer panel

It allows the visualization of data from sensors and
depicts the robot's environment. In addition, it
permits visualization of data from the perspective
of a selected coordinate system based on data from
the tf library. It also enabled graphical
representation of the robot's URDF model and
kinematic analysis of its motion. Additionally, the
interface of the graphical tool enabled the creation
of a digital map of the environment surrounding
the robot based on sensor data.

➔ URDF (Unified Robot Description Format) – used
to determine the kinematics and dynamics of the
robot and was also used to represent the robot [23].
The format was used in the rviz visualizer and in
the Gazebo simulator. URDF files were created
using HTML. Based on the data contained in the
unified format, it was possible to calculate the
spatial pose of the robot and detect potential
programming errors. URDF files with the
appropriate plug-ins could be generated from CAD
software.

An example description of a humanoid robot using
URDF is shown in Fig. 8.

Fig. 8. Description of the robot representation using the
URDF format

➔ Gazebo – a free ROS program for conducting 3D
simulations of robot functioning, created in 2000 at

the University of Southern California as a part of
the Player project. It is one of the most popular
robotics simulators that uses the OGRE
(Object-Oriented Graphics Rendering Engine)
graphics engine. This is because of its high
efficiency and fully accurate mapping of reality
and the laws of physics for which the ODE (Open
Dynamics Engine) is responsible.

● Algorithms

A robot requires a finite sequence of predefined and
consecutive actions in order to work correctly and complete
its tasks. A simplified block diagram of the robot's
algorithm that generates a 2D map, autonomous driving and
remote control is shown in Fig. 7.

1. Control Algorithms

In ROS2, control algorithms for the robot include both
autonomous navigation and remote control capabilities.
Remote control was implemented via the ROS2
communication framework and the Secure Shell (SSH)
protocol. Unlike ROS1, which relied on a central ROS
Master for node communication, ROS2 adopts a
decentralized model where nodes communicate directly
with each other using DDS (Data Distribution Service) for
discovery and message passing. This means there is no need
for a single central node, and the system becomes more
robust and fault-tolerant.

For remote control, the operator's computer
interacts with the robot through this decentralized ROS2
network. Data exchange between the operator’s computer
and the robot happens through ROS2 nodes in a
peer-to-peer fashion, allowing real-time command
transmission and feedback from the robot. Visualization and
control of the robot’s operations are managed from the
operator's unit using tools like Rviz2 or teleop, and the
transmission remains duplex, enabling both control
commands and sensor feedback.

In this setup, the network of nodes responsible for
controlling the robot's actuators and sensors are
interconnected, allowing the operator to monitor and adjust
the robot's movements remotely. The use of ROS2's
enhanced middleware also improves performance, allowing
smoother remote operations, particularly in scenarios
requiring low-latency control.

The network of nodes responsible for remote
control of the effectors is presented in Fig. 8.



Joint Team 1 7 of 10

Fig. 9. Network of nodes responsible for remote control

In ROS2, the teleop_twist_keyboard node was
responsible for handling user input from a personal
computer, converting keystrokes into corresponding
velocity commands in the form of geometry_msgs/Twist
messages, which are published to the cmd_vel topic. These
messages represent the robot's desired linear and angular
velocities.

The cmd_vel messages are sent to the robot's
onboard processing system, where a corresponding node is
responsible for handling the serial communication with
microcontrollers like the Arduino MEGA. Instead of the
rosserial package used in ROS1, ROS2 utilizes micro-ROS
or custom serial communication protocols to bridge the gap
between ROS2 nodes and low-power devices like the
Arduino. This allows the ROS2 nodes to convert high-level
control commands into serial data, which is then sent via
USB or other interfaces to the Arduino.

The diff_drive_controller in ROS2's ros2_control
framework handles differential drive control. This node
processes the cmd_vel messages and translates them into
motor control signals, adjusting each wheel's speed
accordingly. It also reads feedback from wheel encoders,
providing odometry data, which is used for localization.
This data is broadcasted as tf (transform) messages,
allowing the navigation system to track the robot's position
and orientation in real-time.

The robot's autonomous navigation is managed by
Nav2, ROS2's equivalent of the ROS1 navigation_stack.
Nav2 is responsible for path planning, local costmap
management, and control, using sensor data such as Lidar
and odometry to guide the robot to its destination. It
generates the necessary control signals to the motors,
ensuring the robot reaches the operator-defined goal while
avoiding obstacles. This is done using advanced algorithms
such as DWA (Dynamic Window Approach) or Teb (Timed
Elastic Band) for path execution.

In ROS2, the Nav2 package serves as the main
node for navigation, functioning similarly to the move_base
node in ROS1. Like move_base, Nav2 combines both a
global and local planner, while supporting two costmaps:
local and global. These costmaps are essential components
for navigation, providing the robot with information about
obstacles in its immediate vicinity (local) and the overall

environment (global).

Fig. 10. Block diagram of the Nav2 stack.

The global planner in Nav2 is responsible for
generating a path from the robot’s current position to the
target location. It typically uses algorithms like A* or
Dijkstra’s algorithm for this task, much like ROS1’s
move_base. Dijkstra's algorithm, a greedy algorithm,
computes the shortest path between two points by
evaluating all possible routes in a weighted graph, ensuring
the path found has minimal cost.

The local planner in Nav2 uses the Dynamic
Window Approach (DWA) for short-term trajectory
generation. DWA, originally proposed by D. Fox, W.
Burgard, and S. Thrun, computes control commands for the
robot’s linear and angular velocities in real-time. This
algorithm samples the control space and simulates possible
trajectories over short intervals, optimizing the robot’s
speed and proximity to the global path while avoiding
obstacles. The steps in DWA remain the same in ROS2:

● Sampling possible velocities for the robot's control
space.

● Simulating the effect of each sampled velocity on
the robot's trajectory over a short time.

● Evaluating each trajectory based on its distance to
the goal, proximity to obstacles, and speed.

● Selecting the best trajectory and converting it to
control commands for the robot's motors.

● Executing the selected command and repeating the
process in real-time.

In ROS2, Nav2 relies on several nodes, including
the amcl node, which handles probabilistic localization
using Adaptive Monte Carlo Localization(AMCL). This
particle filter algorithm tracks the robot’s position on a
known map by sampling possible locations and weighing
them based on sensor data, allowing the robot to estimate its
pose even with noisy sensor readings. The localization
process is integral to ensuring that the robot can navigate
precisely in a 2D environment.

The robot's odometry is broadcasted through the tf
library, which publishes coordinate transformations between



Joint Team 1 8 of 10

the robot's various reference frames (e.g., base_link,
wheels). The nav_msgs/Odometry message is used to
publish this data, providing essential feedback for the
navigation system. The differential drive controller reads
this odometry information and ensures that the robot's
movement aligns with the commanded velocities.

To avoid collisions, Nav2 integrates sensor data,
such as from the Lidar sensor, which publishes
sensor_msgs/LaserScan messages. These messages provide
a 2D scan of the robot's surroundings, feeding obstacle data
into the local costmap. This information allows the local
planner (DWA) to react dynamically to obstacles by
adjusting the robot’s velocity.

Control messages for the robot’s motors are sent
using geometry_msgs/Twist messages, which contain fields
for linear and angular velocities (e.g., `cmd_vel.linear.x`,
`cmd_vel.linear.y`, and `cmd_vel.angular.z`). These
messages are converted into motor commands by the
low-level controllers, ensuring the robot moves as
instructed by the navigation stack. They are sent in the form
of a geometry_msgs/Twist message and converted into
commands that properly control the operation of the motors.
Figure 10. shows the network of operating nodes
responsible for the correct implementation of autonomous
navigation.

Fig. 11. Network of Operating Nodes for Autonomous Navigation

2. Map Generating Algorithms

In ROS2, the SLAM Toolbox has largely replaced
gmapping as the go-to SLAM algorithm, though gmapping
is still available for legacy projects. SLAM Toolbox is
designed for both lifelong mapping and online SLAM,
offering greater flexibility and performance improvements
compared to gmapping. The algorithm can generate a
two-dimensional map of the robot’s surroundings in
real-time, using data from sensors such as Lidar.

While gmapping in ROS1 used an Extended
Kalman Filter (EKF) to localize the robot, SLAM Toolbox
in ROS2 employs more advanced techniques like

Graph-based SLAM for better accuracy and scalability in
complex environments. Compared to EKF-based methods,
Graph SLAM is more robust when handling large and
complex maps, avoiding the limitations of EKF that arise
when linearizing the non-linear state estimation problem.

SLAM Toolbox also allows for easy map merging,
saving, and continuous updates, making it more suitable for
persistent mapping applications. Unlike hector_slam, which
relies solely on Lidar data and does not use odometry,
SLAM Toolbox can incorporate odometry, IMU (Inertial
Measurement Unit), and laser scanner data, enhancing the
quality and accuracy of the generated map. The use of
SLAM Toolbox in ROS2 improves upon traditional SLAM
methods like gmapping by providing higher accuracy, better
resource management, and the ability to handle more
dynamic environments, making it ideal for autonomous
robot applications in both research and industrial settings.

The ROS2 software for generating a digital map,
required an appropriate transformation of the coordinate
systems representing each of the robot members. This was
carried out by the tf library, which was responsible for the
scene graph concept, reflected in the form of a hierarchy
tree. The tree root was a representation of the environment
map, and each of its vertices was a geometric
transformation, translation, or rotation between the systems
of each member . Figure 12 shows the transformation tree
of the robot’s coordinate systems generated by the
rqt_tf_tree package. The laser subtree reflected the
coordinate system in a polar form represented by a laser
scanner, while the base_link was a representation of the
coordinate system of the robot platform. Odom was the
frame responsible for locating the robot based on the data
provided by the diff_tf node, which was responsible for
acquiring data from encoders and transforming them into
odometry information. The root of the tree was the map
frame.

Fig 12. Transformation Tree



Joint Team 1 9 of 10

C. Experimental Results
The team performed various tests to validate the

functionality, reliability, and robustness of the autonomous
robot. These tests include unit testing, integration testing,
simulation testing, and preliminary reliability analysis.
Below are the details and results of the conducted tests:

1. Unit Testing
Objective: Verify the correct operation of individual
components (motors, sensors, communication modules).

● Motor Testing
Each encoded motor was tested independently by applying
control signals via the L298N motor driver to ensure the
correct speed and direction. The encoders were verified by
monitoring feedback from the Arduino Mega, ensuring that
the motor speed data matched the expected output.

Results: The motors were able to reach the desired
speeds within a 2% margin of error. The encoder feedback
correctly reported real-time speed data to ROS2, ensuring
precise control.

● Lidar (RPLidar A1) Testing
The Lidar sensor was tested by capturing scan data in a
controlled environment and analyzing the range and
accuracy of detected objects.

Results: The Lidar was able to detect objects
accurately up to its maximum range of 12 meters, with no
significant deviations. However, minor data noise was
observed when operating in highly reflective environments.

● ROS2 Node Testing
Each node responsible for motor control, sensor data
processing, and communication was tested individually to
ensure proper functionality and message flow.

Results: All nodes were confirmed to be
operational, with messages successfully passed between
publishers and subscribers. No significant message latency
or packet loss was observed during the tests.

2. Integration Testing

Objective: Verify the interaction between hardware
components and ROS2 nodes in real-world conditions.

● Motor Control and Odometry Testing
The motor control system, including the
diff_drive_controller and odometry feedback, was tested in
an open environment. The robot was tasked with moving in
a straight line and performing rotational maneuvers based
on velocity commands (`cmd_vel`).

Results: The robot achieved smooth forward motion
and consistent rotational control, with deviations in
movement under 3%. The odometry data matched the
expected traveled distance, with a small drift observed after

prolonged runs (about 1 cm drift after 5 meters).

● Sensor Integration
The Lidar and odometry data were integrated and tested
using the SLAM algorithm. The robot was placed in a
controlled environment with known obstacles, and its
ability to map and localize itself was analyzed.

Results: The mapping process was successful,
generating accurate 2D maps with a 95% match to the real
environment. Minor localization errors were observed when
the robot moved at higher speeds (>0.5 m/s), but this was
mitigated by tuning the SLAM parameters.

● Remote Control via Teleop Node
The teleop_twist_keyboard node was used to control the
robot remotely via an SSH connection, allowing manual
commands to be sent over the ROS2 network.

Results: Remote control was responsive, with
negligible latency (<100 ms delay) in command execution.
The robot responded smoothly to velocity commands issued
through the keyboard.

3. Simulation Testing
Objective: Evaluate the navigation system using simulated
environments in Gazebo.

● Navigation with Obstacles
The robot was tested in a Gazebo simulation with various
static and dynamic obstacles to assess its path-planning and
collision avoidance abilities.

Results: The Nav2 stack performed well, with the
global planner accurately planning paths around obstacles.
The local planner (DWA) successfully avoided dynamic
obstacles with only minor delays in reaction time (up to 0.2
seconds). In some cases, the robot had difficulty navigating
narrow passages, but adjustments to the local costmap
improved performance.

● SLAM and Mapping
The robot's mapping capabilities were tested by simulating
different environments, including open areas and maze-like
structures.

Results: SLAM was able to generate accurate maps
in open areas, with minor discrepancies in tight or complex
environments. The SLAM Toolbox demonstrated high
performance with continuous mapping and loop closure,
enabling map correction when revisiting previously mapped
areas.

4. Reliability and Robustness Testing
Objective: Assess the reliability of the system over
extended use and identify potential failure points.



Joint Team 1 10 of 10

● Long-Run Motor and Odometry Test
The robot was run continuously for 1 hour in a test field to
measure wear on the motors and check odometry
consistency over time.

Results: After 1 hour of continuous operation,
motor performance remained stable. However, a slight
degradation in odometry accuracy (2 cm drift per 10
meters) was noted, likely due to wheel slippage. The system
remained operational with no hardware overheating.

● Sensor Failure Simulation
The team simulated a sensor failure scenario by temporarily
disabling the Lidar sensor during operation, testing the
system’s behavior and recovery.

Results: The system recognized the loss of Lidar
data and halted navigation as expected, triggering a fail-safe
stop. Manual intervention was required to reset the sensor
connection and resume operation.

● Communication Fault Tolerance
The robot's ability to handle communication interruptions
between the Raspberry Pi and Arduino was tested by briefly
severing the serial connection.

Results: The robot entered a safe mode upon losing
communication, stopping all motor actions until the
connection was restored. Upon re-establishment, the system
resumed normal operation without manual intervention.

5. Reliability and Robustness Studies
The team conducted initial estimates of the robot’s
reliability by examining failure points, including potential
sensor malfunctions and motor wear. Basic reliability
modeling was performed using failure mode analysis,
identifying the Lidar and motor drivers as critical
components. Preliminary structural analysis of the acrylic
chassis was also done to ensure durability under mechanical
stress during the competition.

● Failure Analysis
The primary risk areas include Lidar sensor failure and
motor driver overheating. Redundancy strategies, such as
adding multiple sensors or introducing a backup
communication protocol, are being explored.

● Structural Analysis
The acrylic chassis showed no signs of deformation or
damage during testing, and the load-bearing capacity was
deemed sufficient for the competition.

Summary of Testing Results:
● Motors: Accurate with minor drift over long

distances.
● Lidar: Consistent, but slightly noisy in reflective

environments.

● ROS2 Nodes: Reliable with minimal latency in
communication.

● Navigation: Effective in both simulated and real
environments, with improvements needed in
narrow passage navigation.

● Reliability: High reliability with predictable failure
modes and recovery mechanisms in place.

D. Conclusion
Robotics is increasingly influencing daily life, with
engineers developing robots to take over labor-intensive,
monotonous, and dangerous jobs. This trend is evident not
only in industry but also in service sectors and private use.
Alongside innovative designs, sophisticated software is
essential for autonomous machines. An example of this
advancement is the use of algorithms for SLAM
(Simultaneous Localization and Mapping), enhancing robot
autonomy and safety. The autonomous robot discussed in
this article features advanced sensors, including the
RPLidar A3M1 laser scanner, and employs control
algorithms applicable to other mobile robots. Utilizing the
LINUX OS and Robot Operating System, the robot operates
in real-time, meeting requirements for autonomous
navigation and two-dimensional map generation. Testing
with the gmapping algorithm successfully enabled the robot
to navigate between specified trajectory points.
Additionally, thermal imaging assessments were conducted
to evaluate cooling solutions for the onboard computer,
comparing passive and active cooling efficiencies.

E. References.
[1] Slamtec. 2019. RPLIDAR 360 Degree Laser Range Scanner Interface

Protocol and Application Notes. Shanghain Slamtec. Co.
[2] TECO ELECTRIC CO.: Motor Specification TFK280SC-21138-45.

http://cdn.sparkfun.com/datasheets/Robotics/RP6%20motor%20TFK
280SC-21138-45.pdf (access on 1.02.2022).

[3] L298N Motor Driver Controller Board. Instructables. 2015.
https://www.makerfabs.com/l298n-motor-driver-board.html (access
on 1.02.2022).

[4] Docter, Quentin, and Jon Buhagiar. 2019. Introduction to TCP / IP
(from
https://www.researchgate.net/publication/332460567_Introduction_to
_TCPIP

[5] Quigley, Morgan, Brian Gerkey, Ken Conley, Josh Faust, Tully
Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng.
2009. ROS: an open-source Robot Operating System. In Proceedings
of the ICRA workshop on open source software 3 (3.2).

[6] Kam, Hyeong Ryeol, Sung Ho Lee, Taejung Park, and Chang Hun
Ki. 2015. “RViz: a toolkit for real domain data visualization”.
Telecommunication Systems 60 (2) : 1-9.

[7] Kang, Yeon, Donghan Kim, and Kwangjin Kim. 2019. URDF
Generator for Manipulated Robot. In Proceedings of the Third IEEE
International Conference on Robotic Computing (IRC).

[8] Macenski, A. Soragna, M. Carroll, Z. Ge, “Impact of ROS 2 Node
Composition in Robotic Systems”, IEEE Robotics and Autonomous
Letters (RA-L), 2023.

[9] K Belsare. Micro-ROS//A Koubaa. Robot Operating System (ROS).
Cham:Springer International Publishing, 2023: 3-55.

https://www.makerfabs.com/l298n-motor-driver-board.html
https://www.makerfabs.com/l298n-motor-driver-board.html
https://www.researchgate.net/publication/332460567_Introduction_to_TCPIP
https://www.researchgate.net/publication/332460567_Introduction_to_TCPIP
https://www.researchgate.net/publication/332460567_Introduction_to_TCPIP

